摘要
在条件f:R→R连续,单调递增,|f(z)≤|,当z≠0时,zf(z)>0.研究了过t-x平面上任意一点(ξ,η),方程(x′(t)=f(x<n>(t))解的存在性延拓及其性质,得出了解曲线可以“填满”整个平面的结论,以及在f是局部Lipschitz时,任意σ∈R,满足x(σ)=σ及对任意ξ>η>0,满足x(ξ)=η的解的唯一性.
Under the conditions thatf∈C(R,R),|f(z)|≤1,zf(z)>0 when z≠0,and f is monotonically increasing,the paper studies the existence and continuation and behavior of solutions of the equation x′(t)=f(x <n> (t)) across any point of the t x plane and obtains the conclusion that the curves of solutions may “fill” the whole plane. The solution satisfing x(σ)=σ for any σ∈R and satisfing x(ζ)=η for any ζ>η>0 is unique when f is local Lipschitz.
出处
《北京理工大学学报》
EI
CAS
CSCD
1997年第4期401-407,共7页
Transactions of Beijing Institute of Technology
基金
国家自然科学基金
关键词
泛函微分方程
不动点定理
存在性
唯一性
functional differential equations
fixed point theorem
existence
uniqueness