摘要
用更精确的先验估计及重合度理论研究一类二阶迭代微分方程x(¨t)+g(x(x(t)))=f(t,x(t),x.(t))周期解的存在性,得出了周期解存在的充分条件.
By means of better prior estimate and the topologial degree, the existence of periodic solutions to a class of the second order functional differential-iterative equations x ( t ) + g ( x ( x ( t ) ) ) = f( t, x (t) , x (t) ) was studied, and sufficient conditions of the equation with periodic solutions were obtained.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2006年第4期541-546,共6页
Journal of Jilin University:Science Edition
基金
国家科技部973项目基金(批准号:1999064911)
关键词
迭代泛函微分方程
周期解
拓扑度
functional differential-iterative equation
periodic solution
topologial degree