期刊文献+

迭代微分方程x'(t)=ω(t)(ax(t)-bx(x(t)))(a>b>0)的周期解 被引量:3

ON THE PERIODIC SOLUTION OF DIFFERENTIAL-ITERATIVE EQUATION x'(t) = ω(t)(ax(t) - bx(x(t)))(a>b>0)
原文传递
导出
摘要 本文讨论了一类非自治迭代微分方程x’(t)=ω(t)(ax(t)-bx(x(t)))(a>b>0)的解的存在性、解的性态及周期.此结论推广了文[1]的定理. The existence and behaviour of the periodic solutions to equation X'(t) =ω(t)(ax(t) - bx(x(t))) (a > b > 0) are studied. Our results extend the theorem in [1].
出处 《系统科学与数学》 CSCD 北大核心 1999年第4期457-464,共8页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金
关键词 迭代微分方程 不动点 周期解 泛函微分方程 Differential-iterative equation, fixed point, periodic solution.
  • 相关文献

参考文献4

二级参考文献14

共引文献13

同被引文献8

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部