期刊文献+

一种有效抑制睫毛干扰的虹膜定位算法 被引量:4

An Effective Algorithm Suppressing Eyelash Interference for Iris Location
下载PDF
导出
摘要 为了提高在图像质量较差时的虹膜定位性能,改善虹膜定位的成功率和速度,在对Daug-man算法改进的基础上,提出了一种基于形态学算子的虹膜定位算法(ILBM).该算法将睫毛干扰看作虹膜图像中出现的缝隙,通过应用形态学中的膨胀算子对缝隙进行填补进而消除干扰,虹膜边缘参数则采用Hough变换来求取.与Daugman算法相比,ILBM算法可以有效抑制虹膜定位过程中存在的睫毛干扰,提高虹膜定位的速度.对比实验表明,ILBM算法具有比Daugman算法更好的抑制干扰能力和鲁棒性,具有更高的定位成功率和更快的定位速度,定位时间仅为Daugman算法的17%,定位成功率提高了3.7%. In order to improve the success ratio and velocity of iris location, an iris location algo- rithm based on morphological operators was developed. The iris location algorithm was realized through regarding the eyelashes as slits of iris image and applying the dilation operator of the morphology to fill up, and then the disturbance was removed. The Hough transform was used to get the parameter of iris boundary. So, the proposed iris location algorithm can reduce the errors caused by eyelashes and eyelids, and improve the speed of location process. Experiment validation has been carried out with iris image database. It shows that the improved algorithm can locate the iris more effective and quickly. Compared with the traditional algorithm of Daugman, and the location time is only 17% of Daugman's algorithm and the success ratio can be increased by 3.7%.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2007年第10期1175-1178,共4页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(60502021) 教育部高等学校博士学科点专项科研基金资助项目(20050698025)
关键词 边缘检测 虹膜定位 形态算子 edge detection iris location morphological operation
  • 相关文献

参考文献10

  • 1Jain A,Bolle R,Pankanti S,et al.Biometrics:personal identification in a networked society[M].Boston,USA:Kluwer Academic Publisher,1999. 被引量:1
  • 2王勇,韩九强.基于最小最大概率机的虹膜图像分类方法研究[J].西安交通大学学报,2006,40(6):651-654. 被引量:4
  • 3Daugman J.How iris recognition works[J].IEEE Transactions on Circuits and System for Video Technology,2004,14(1):21-30. 被引量:1
  • 4Daugman J.The importance of being random:statistical principles of iris recognition[J].Pattern Recognition,2003,36(2):279-291. 被引量:1
  • 5Wildes R P.Iris recognition:an emerging biometric technology[J].Proceedings of the IEEE,1997,85(9):1348-1363. 被引量:1
  • 6Liu Xiaomei,Bowyer K W,Flynn P J.Experimental evaluation of iris recognition[C] //Proceeding of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway,USA:IEEE,2005:151-158. 被引量:1
  • 7Ma Li,Tan Tieniu,Wang Yunhong,et al.Efficient iris recognition by characterizing key local variations[J].IEEE Transactions on Image Processing,2004,13(6):739-750. 被引量:1
  • 8Miyazawa K,Ito K,Aoki T,et al.An efficient iris recognition algorithm using phase-based image matching[C]//Proceeding of IEEE International Conference on Image Processing.Piscataway,USA:IEEE,2005:49-52. 被引量:1
  • 9Gonzalez R C,Woods R E.Digital image processing[M].2nd ed.北京:电子工业出版社,2002:519-567. 被引量:1
  • 10Center for Biometrics and Security Research.CASIA iris image database[ED/OL].(2003-12)[2006-08-01].http://www.sinobiometrics.com/casiairis.htm. 被引量:1

二级参考文献9

  • 1王勇,韩九强,刘鹏飞.基于多尺度策略的三步虹膜定位算法研究[J].微电子学与计算机,2005,22(4):26-29. 被引量:6
  • 2Daugman J.The important of being random:statistical principles of iris recognition[J].Pattern Recognition,2003,36(2):279-291. 被引量:1
  • 3Boles W W.A security system based on human iris identification using wavelet transform[J].Engineering Applications of Artificial Intelligence,1998,11 (1):77-85. 被引量:1
  • 4Ma Li,Wang Yunhong,Tan Tieniu.Iris recognition using circular symmetric filters[A].Proceedings of the 16th International Conference on Pattern Recognition[C].Piscataway,USA:Institute of Electrical and Electronics Engineers Inc,2002.414-417. 被引量:1
  • 5Lanckriet G R G,Ghaoui L E,Bhattacharyya C,et al.Minimax probability machine[A].Proceedings of Advances in Neural Information Processing Systems[C].Berkeley:Department of EECS University of California,2002.1-7. 被引量:1
  • 6Bertsimas D,Sethuraman J.Handbook of semidefinite optimization[M].Boston:Kluwer Academic Publishers,2000.469-509. 被引量:1
  • 7Boyd S,Vandenberghe L.Convex optimization[EB/OL].http://www.stanford.edu/class/ee364,2001-12-21/2005-06-15. 被引量:1
  • 8Nesterov Y,Nemirovsky A.Interior point polynomial methods in convex programming:theory and application[M].Philadelphia,USA:Society for Industrial and Applied Mathematics,1994. 被引量:1
  • 9Center for Biometrics and Security Research.Iris image database[ED/OL].http://www.cbsr.ia.ac.cn/databases.htm,2002-10-10/2003-06-08. 被引量:1

共引文献3

同被引文献42

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部