期刊文献+

用于虹膜识别的眼睑及眼睫毛遮挡检测 被引量:12

Eyelid and Eyelash Occlusions Detection for Iris Recognition
下载PDF
导出
摘要 分别针对眼睑和眼睫毛遮挡噪声,利用其灰度和形状信息提出了2种灰度形态学检测算法.1)设计弧线形的形态学结构元素,经过灰度开启运算、图像分割和边缘检测,获得眼睑边缘的候选点集,再利用B啨zier曲线拟合出眼睑边缘;2)构造交叉形的形态学结构元素,通过灰度开启运算得到直方图具有分段特性的虹膜图像,经二值化检测出眼睫毛.实验结果表明:文中算法能有效地检测2种遮挡噪声,有助于降低虹膜识别系统的等错误率,提高模式的可分性. Two gray-scale morphological algorithms are presented for the detection of eyelid and eyelash occlusions based on intensity and shape information. Firstly, an arc morphological structuring element is designed for detecting eyelid edge. A set of candidate points for eyelid edge can be obtained by gray-scale morphological opening, image segmenting, and edge detecting. Then the eyelid edge is fitted on the basis of B6zier curves. Secondly, a crossed morphological structuring element is developed. An iris image, whose intensity is mostly distributed in several sections, can be acquired after gray-scale morphological opening. Thus a binary image of eyelashes is obtained. The experimental results show that the proposed algorithms are effective on detecting these two kinds of occlusion noises, and helpful to reduce the Equal Error Rate of iris recognition system, and finally able to improve the discriminability of iris patterns.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2007年第3期346-350,共5页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60472083)
关键词 虹膜识别 眼睑遮挡检测 眼睫毛遮挡检测 灰度形态学 iris recognition eyelid occlusions detection eyelash occlusions detection gray-scale morphology
  • 相关文献

参考文献7

  • 1Kong W,Zhang D.Accurate iris segmentation based on novel reflection and eyelash detection model[C]//Proceedings of 2001 International Symposium on Intelligent Multimedia,Video and Speech Processing,Hong Kong,2001:263-266 被引量:1
  • 2Daugman J.How iris recognition works[J].IEEE Transactions on Circuit and System for Video Technology,2004,14(1):21-30 被引量:1
  • 3Wildes R.Iris recognition:an emerging biometric technology[J].Proceedings of the IEEE,1997,85(9):1348-1363 被引量:1
  • 4Pardas M.Extraction and tracking of the eyelids[C]//Proceedings of IEEE International Conference on Acoustics,Speech,and Signal Processing,Istanbul,2000:2357-2360 被引量:1
  • 5宋加涛,刘济林,池哲儒,王蔚.人脸正面图像中眼睛的精确定位[J].计算机辅助设计与图形学学报,2005,17(3):540-545. 被引量:13
  • 6Daugman J.High confidence visual recognition of persons by a test of statistical independence[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(11):1148-1161 被引量:1
  • 7中国科学院自动化研究所.第一届中国生物特征识别竞赛训练库Ⅰ[OL].(2004-08-10)[2006-08-23]http://www.sinobiometrics.com/sinobiometrics'04.htm 被引量:1

二级参考文献12

  • 1Brunelli R, Poggio T. Face recognition: Features versus templates[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(10): 1042~1052 被引量:1
  • 2Pentland A, Moghanddam B, Starner T. Viewbased and modular Eigenspaces for face recognition[A]. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, 1994. 84~91 被引量:1
  • 3Rafael C Gonzalez, Richard E Woods. Digital Image Processing[M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2002 被引量:1
  • 4Yale University. Face database[OL]. http://cvc.yale.edu/projects/yalefaces/yalefaces.html, 1997 被引量:1
  • 5Turk M, Pentland A. Eigenfaces for recognition[J]. Journal of Cognitive Neuroscience, 1991, 3(1): 71~86 被引量:1
  • 6Martinez A M, Benavente R. The AR face database[R]. CVC Technical Report #24, West Lafayetle, Indiana: Purdue University, 1998 被引量:1
  • 7Chellappa R, Wilson C L, Sirohey S. Human and machine recognition of faces: A survey[J]. Proceedings of the IEEE, 1995, 83(5): 705~741 被引量:1
  • 8Beveridge R, Bolme D, Teixeira M, et al. The CSU face identification evaluation system user's guide: version 5.0 [OL]. http://www.cs.colostate.edu/evalfacerec/index.html, 2003 被引量:1
  • 9Yuille A L, Hallinan P W, Cohen D S. Feature extraction from faces using deformable template [J]. International Journal of Computer Vision, 1992, 8(2): 99~111 被引量:1
  • 10Chow G, Li X. Towards a system for automatic facial feature detection[J]. Pattern Recognition, 1993, 26(12): 1739~1755 被引量:1

共引文献12

同被引文献89

引证文献12

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部