期刊文献+

形态学算子和小波变换的虹膜去噪算法 被引量:5

Suppressing Eyelash Interference Algorithm Based on Morphology and Wavelet Analysis
下载PDF
导出
摘要 为了解决虹膜识别过程中睫毛噪声干扰的问题,提出了一种基于形态学算子和小波变换相结合的睫毛抑制算法。该算法首先将虹膜图像中的睫毛区域模拟成背景图像中的"裂缝",通过形态学膨胀算子对裂缝区域进行像素填充,然后利用小波变换的多分辨率特性,对变换后的高频系数进行非线性小波阈值处理,低频部分进行反锐化掩膜,最后经小波逆变换重构虹膜图像。样本仿真实验表明:该算法可以使Daugman和Wildes定位算法的精确度分别提高2.1%和2.43%,定位时间相对减少24.3%和22.6%。 In order to improve the performance of eyelash interference suppressing algorithm in the iris recognition,a new eyelash suppression algorithm based on the combination between morphological operators and wavelet transform is proposed.In the proposed algorithm,the eyelash area of the iris image is firstly simulated into the 'cracks' of the background image and the crack area is filled with pixels by morphological dilation operator.Then,the high frequen cy wavelet transform coefficients are processed as nonlinear wavelet threshold based on the multi-resolution characteristic of wavelet transform,and low-frequency parts are processed as the unsharp mask.Finally,the iris image is reconstructed by using inverse wavelet transform.The simulation results show that the Daugman and Wildes localization methods based on the proposed algorithm have an improvement of about 2.1% and 2.43 % for location accuracy and a drop of about 24.3% and 22.6% for location time,respectively,compared with the Daugman and Wildes localization algorithms based on the Gaussian filtering algorithm.
出处 《数据采集与处理》 CSCD 北大核心 2013年第5期586-590,共5页 Journal of Data Acquisition and Processing
基金 江苏省高校科研成果产业化推进项目(JHB2012-9)资助项目 江苏省高校自然科学研究重大项目(13KJA510001)资助项目
关键词 虹膜定位 膨胀 小波变换 睫毛干扰 iris registration dilation wavelet transform eyelash interference
  • 相关文献

参考文献11

二级参考文献89

共引文献83

同被引文献37

  • 1陶立敏,许昌如.小波包在雷达杂波信号处理中的应用[J].武汉理工大学学报(交通科学与工程版),2005,29(2):277-279. 被引量:3
  • 2梁栋,沈敏,高清维,鲍文霞,屈磊.一种基于Contourlet递归Cycle Spinning的图像去噪方法[J].电子学报,2005,33(11):2044-2046. 被引量:38
  • 3刘卫东,刘尚合,胡小锋,王雷.小波阈值去噪函数的改进方法分析[J].高电压技术,2007,33(10):59-63. 被引量:67
  • 4Hyvarinen A, Karhunen J, Oja E. Independent component analysis[M]. New York.. John Wiley Sons, 2001: 94-11Z. 被引量:1
  • 5Zarzoso V, Comon P. Robust independent component analysis by iterative maximization of the kurtosis contrast with alge- braic optimal step size[J]. IEEE Transactions on Neural Networks, 2010, 21 (2): 248-261. 被引量:1
  • 6Mallat M S. A wavelet tour of signal processing[M]. 3rd Edition. Salt Lake City, Academic Press, 2009 4-9. 被引量:1
  • 7Antoniadis A. Wavelet methods in statistics: Some recent developments and their applications[J]. Statistics Surveys, 2007 (1) : 16-55. 被引量:1
  • 8Ho J, Hwang W L. Wavelet Bayesian network image denoising[J]. IEEE Transactions on Image Processing, 2013, 22(4) .. 1277-1290. 被引量:1
  • 9Boubehir L, Boashash B. Wavelet denoising based on the MAP estimation using the BKF prior with application to images and EEG signals[J]. IEEE Transactions on Signal Processing, 2013, 61(8) : 1880-1894. 被引量:1
  • 10Paraschiv-Ionescu A, Jutten C, Aminian K. Source separation in strong noisy mixtures: A study of wavelet de-noising pre- processing[C]//ICASSPr2002. Orlando, Florida: rs. n. 1, 2002: 1681-1684. 被引量:1

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部