期刊文献+

一类奇异二阶两点边值问题多重正解的局部存在定理 被引量:4

Local Existence Theorems of Multiple Positive Solutions to a Class of Singular Second-Order Two-Point Boundary Value Problems
下载PDF
导出
摘要 利用锥拉伸与锥压缩型的Guo-Krasnoselskii不动点定理考察了非线性方程u″(t)+h(t)f(t,u(t)) =0的两点边值问题的正解.f(t,u)是局部本性有界的,只要f(t,u)在某些有界集合上的本性高度是适当的,则该问题可以具有n个正解,其中n是一个任意的正整数。 The positive solutions are considered for a class of two-point boundary value problems of the nonlinear equation u"(t) + h(t)f(t, u(t)) = 0, by applying the Guo-Kraxnoselskii fixed point theorems of cone expansion-compression type. In this paper, f(t, u) is locallyessentially bounded. The main results show that the problem may have n positive solutions provided the essential heights of f(t, u) are appropriate on some bounded sets, where n is an arbitrary positive integral number.
作者 姚庆六
出处 《数学年刊(A辑)》 CSCD 北大核心 2007年第4期581-588,共8页 Chinese Annals of Mathematics
关键词 非线性常微分方程 边值问题 奇异性 正解 存在性 多解性 Nonlinear ordinary differential equation, Boundary value problem,Singularity, Positive solution, Existence, Multiplicity
  • 相关文献

参考文献8

二级参考文献12

共引文献56

同被引文献39

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部