期刊文献+

一类新的含有垂直传染与脉冲免疫的时滞SEIR传染病模型的全局动力学行为 被引量:28

Global Dynamics Behaviors for a New Delay SEIR Epidemic Disease Model With Vertical Transmission and Pulse Vaccination
下载PDF
导出
摘要 对一个带有有害时滞与垂直传染的SEIR传染病模型,在脉冲免疫接种条件下,分析了其动力学行为.运用离散动力系统的频闪映射,获得了一个‘无病’周期解,证明了当模型的一些参数在适当的条件下,该‘无病’周期解是全局吸引的.运用脉冲时滞泛函微分方程理论,获得了含有时滞的持久性的充分条件,并且证明了时滞、脉冲免疫与垂直传染对模型的动力学行为能够产生显著的影响.结论表明该时滞是"有害"时滞. A robust SEIR epidemic disease model with a profitless delay and vertical transmission was formulated, and the dynamics behaviors of the model under pulse vaccination were analyzed. By use of the discrete dynamical system determined by the stroboscopic map,an 'infection-free' periodic solution was obtained. Further, it is shown that the ' infection-free' periodic solution is globally attractive when some parameters of the model are under appropriate conditions. Using the theory on delay functional and impulsive differential equation, sufficient condition with time delay for the permanence of the system was obtained. And it was proved, that time delays, pulse vaccination and vertical transmission can bring obvious effects on the dynamics behaviors of the model. The results indicate that the delay is "profitless".
出处 《应用数学和力学》 CSCD 北大核心 2007年第9期1123-1134,共12页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10471117)
关键词 持久性 脉冲免疫接种 水平与垂直传染 时滞 全局吸引性 permanence pulse vaccination horizontal and vertical transmission delay global attractivity
  • 相关文献

参考文献28

  • 1Michael Y Li,Gaef John R,WANG Lian-cheng,et al.Global dynamics of an SEIR model with varying total population size[J].Mathematical Biosciences,1999,160(2):191-213. 被引量:1
  • 2Michael Y Li,Hall Smith,Wang Lian-cheng.Global dynamics of an SEIR epidemic model with vertical transmission[ J].SIAM Journal on Applied Mathematics,2001,62(1):58-69. 被引量:1
  • 3Al-Showaikh F N M,Twizell E H.One-dimensional measles dynamics[ J].Applied Mathematics and Computation,2004,152(1):169-194. 被引量:1
  • 4Greenhalgh D.Hopf bifurcation in epidemic models with a latent period and nonpermanent immunity[J].Mathematical and Computer Modelling,1997,25(5):85-107. 被引量:1
  • 5LI Gui-hua,JIN Zhen.Global stability of an SEIR epidemic model with infectious force in latent,infected and immune period[J].Chaos,Solitons and Fractals,2005,25(5):1177-1184. 被引量:1
  • 6Hethcote H W,Stech H W,Van den Driessche P.Periodicity and stability in epidemic models:A survey[A].In:Differential Equations and Applications in Ecology,Epidemics,and Population Problems[M].New York:Academic Press,1981,65-85. 被引量:1
  • 7D' Onofrio Alberto.Stability properties of pulse vaccination strategy in SEIR epidemic model[ J].Mathematical Biosciences,2002,179(1):57-72. 被引量:1
  • 8D' Onofrio Alberto.Mixed pulse vaccination strategy in epidemic model with realistically distriibuted infectious and latent times[J].Applied Mathematics and Computation,2004,151(1):181-187. 被引量:1
  • 9Fine P M.Vectors and vertical transmission:an epidemiologic perspective[ J ].Annals of the New York Academy of Sciences,1975,266(11):173-194. 被引量:1
  • 10Busenberg S,Cooke K L,Pozio MA.Analysis of a model of a vertically transmitted disease[J].Journal of Mathematical Biology,1983,17(3):305-329. 被引量:1

同被引文献178

引证文献28

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部