期刊文献+

具有饱和反应率和阶段时滞结构的害虫生物防治模型

Strategy for Biological Pest Management Model with Saturated Contact Rate and Delayed Stage Structure
原文传递
导出
摘要 考虑了一个害虫和天敌都有阶段结构及具有饱和反应率的阶段时滞脉冲捕食者-食饵模型,利用人工周期定量地投放有病的害虫和天敌去治理害虫.借助脉冲时滞微分方程的相关理论和方法获得易感害虫根除周期解全局吸引的充分条件以及天敌与易感害虫可以共存且易感害虫的密度可以控制在经济危害水平之下的充分条件.我们的结论为现实的害虫管理提供了可靠的策略依据. This paper deals with :a biological pest management model with saturated contact rate and delayed stage structure. It obtains a biological pest management strategy by periodically releasing the infected pest and the natural predators. The sufficient conditions for the global attraction of susceptible pest-eradication periodic solution and the pest popu- lation is below the economic threshold level and it may coexist with the predator population are obtained by usihg the theory of impulsive differential equation. Our conclusion provides reliable tactic basis for the practical pest management.
出处 《数学的实践与认识》 CSCD 北大核心 2010年第2期135-141,共7页 Mathematics in Practice and Theory
基金 山东科技大学春蕾计划项目(2009BW2026)
关键词 饱和反应率 阶段时滞结构 生物防治 脉冲 全局吸引 saturated contact rate delayed stage structure biological pest management impulsive effect global attraction
  • 相关文献

参考文献9

二级参考文献44

  • 1S.H.SAKER.OSCILLATION AND GLOBAL ATTRACTIVITY OF IMPULSIVE PERIODIC DELAY RESPIRATORY DYNAMICS MODEL[J].Chinese Annals of Mathematics,Series B,2005,26(4):511-522. 被引量:4
  • 2Koss A M, Snyder W E. Alternative prey disrupt biocontrol by a guild of generalist. Biol. Contr., 2005, 32: 243-251. 被引量:1
  • 3Hajek A E, Leger S R J. Interactions between fungal pathogens and insect hosts. Annu. Rev. Entomol., 1994, 39: 293-322. 被引量:1
  • 4Beegle C C, Yamamoto T. History of bacillus thuringiensis berliner research and development. Can. Entomol., 1992, 124: 587-616. 被引量:1
  • 5Aiello W G, Freedman H I. A time-delay model of single-species growth with stage-structured. Math. Biosci., 1990, 101: 139-153. 被引量:1
  • 6Xiao Y N, Chen L S. A ratio-depengent predator-prey model with disease in the prey. Appl. Math. Comput. 2002, 131: 397-414. 被引量:1
  • 7Bainov D, Simeonov P. Impulsive differential equations:periodic solutions and applications. Longman. 1993. 被引量:1
  • 8Kuang Y. Delay differential equation with application in population dynamics. Academic Press. 1987. 被引量:1
  • 9Venturino E.The influence of diseases on Lotka-Volterra system[J].Rockymount,J Math,1994,24(1):389-402. 被引量:1
  • 10Chattopadhyay J,Arino O.A predator-prey model with disease in the prey[J].Nonlinear Anal,1999,36(2):749-766. 被引量:1

共引文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部