期刊文献+

一类具年龄结构n维食物链模型的最优收获控制 被引量:5

Optimal Harvesting for an Age-Dependent n-Dimensional Food Chain Model
下载PDF
导出
摘要 研究一类具有年龄结构n维食物链模型的最优收获控制.利用不动点定理,证明了系统非负解的存在性和唯一性.由Mazur定理,证明了最优控制策略的存在性,同时由法锥概念的特征刻画,还得到了控制问题最优解存在的必要条件. Optimal harvesting poficy for an age-dependent n-dimensional food chain model is studied. The existence and uniqueness of non-negalive solution of the system were proved using the fixed point theorem. By Mazur's theorem, the existence of optimal control strategy was demonstrated and optimality conditions were derived by means of normal cone.
出处 《应用数学和力学》 EI CSCD 北大核心 2008年第5期618-630,共13页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10771048)
关键词 食物链 年龄结构 最优控制 最大值原理 food chain age-dependence optimal control the maximum principle
  • 相关文献

参考文献16

  • 1Brokate M. Pontryagin' s principle for control problems in age-dependent population dynamics[J ]. J Math Biol, 1985,23: 75-101. 被引量:1
  • 2Murphy L F, Smith S J. Optimal harvesting of an age-structured population[ J]. J Math Biol, 1990,29: 77-90. 被引量:1
  • 3Clark C W. Mathematical Bioeconomics: the Optimal Management of Renewable Resouces [ M ]. 2Ed. New York:John Wiley and Sons Inc, 1990. 被引量:1
  • 4Busoni G, Matucci S.A problem of optimal harvesting policy in two-stage age-dependent population [ J ]. Math Biosci, 1997,143:1-33. 被引量:1
  • 5Anita S. Optimal harvesting for a nonlinear age-dependent population dynamics[ J]. J Math Anal Appl, 1998,226:6-22. 被引量:1
  • 6Anita S,Iannelli M,Kim M Y, et al. Optimal harvesting for periodic age-dependent population dynamics[J]. SIAMJAppl Math, 1998,58(5) : 1648-1666. 被引量:1
  • 7Anita S. Analysis and Control of Age-Dependent Population Dynamics [ M]. Dordrecht: Kluwer Academic Publlshers, 2000. 被引量:1
  • 8Albrecht F, Gatzke H, Haddad A, et al. On the control of certain interacting populations[ J]. J Math Anal Appl, 1976,53: 578-603. 被引量:1
  • 9Lenhart S, Liang M, Protopopescu V. Optimal control of boundary habitat hostility for interacting species[ J]. Math Mech Appl Sci, 1999,22: 1061-1077. 被引量:1
  • 10Crespo L G,Sun J Q. Optimal control of populations of competing species[J]. Nonlinear Dynamics, 2002,27:197-210. 被引量:1

二级参考文献28

  • 1Michael Y Li,Gaef John R,WANG Lian-cheng,et al.Global dynamics of an SEIR model with varying total population size[J].Mathematical Biosciences,1999,160(2):191-213. 被引量:1
  • 2Michael Y Li,Hall Smith,Wang Lian-cheng.Global dynamics of an SEIR epidemic model with vertical transmission[ J].SIAM Journal on Applied Mathematics,2001,62(1):58-69. 被引量:1
  • 3Al-Showaikh F N M,Twizell E H.One-dimensional measles dynamics[ J].Applied Mathematics and Computation,2004,152(1):169-194. 被引量:1
  • 4Greenhalgh D.Hopf bifurcation in epidemic models with a latent period and nonpermanent immunity[J].Mathematical and Computer Modelling,1997,25(5):85-107. 被引量:1
  • 5LI Gui-hua,JIN Zhen.Global stability of an SEIR epidemic model with infectious force in latent,infected and immune period[J].Chaos,Solitons and Fractals,2005,25(5):1177-1184. 被引量:1
  • 6Hethcote H W,Stech H W,Van den Driessche P.Periodicity and stability in epidemic models:A survey[A].In:Differential Equations and Applications in Ecology,Epidemics,and Population Problems[M].New York:Academic Press,1981,65-85. 被引量:1
  • 7D' Onofrio Alberto.Stability properties of pulse vaccination strategy in SEIR epidemic model[ J].Mathematical Biosciences,2002,179(1):57-72. 被引量:1
  • 8D' Onofrio Alberto.Mixed pulse vaccination strategy in epidemic model with realistically distriibuted infectious and latent times[J].Applied Mathematics and Computation,2004,151(1):181-187. 被引量:1
  • 9Fine P M.Vectors and vertical transmission:an epidemiologic perspective[ J ].Annals of the New York Academy of Sciences,1975,266(11):173-194. 被引量:1
  • 10Busenberg S,Cooke K L,Pozio MA.Analysis of a model of a vertically transmitted disease[J].Journal of Mathematical Biology,1983,17(3):305-329. 被引量:1

共引文献27

同被引文献24

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部