期刊文献+

用于机械故障诊断Bayes网络的MLE学习方法 被引量:1

The MLE Algorithm on the Bayes Network for Machine Fault Diagnosis
下载PDF
导出
摘要 组建完成了一个用于机械故障诊断的具有两层节点结构的Bayes网络模型,利用Bayes网络的强大学习功能,探讨了当学习样本集完整时,采用MLE(最大似然估计)法则来合理地调整网络模型的CPT表值,使之更加符合特定机组的运行情况,从而为网络模型的判断推理做好了准备。 On the base of Bayes network, the model of fault diagnosis for machine contains two-layer nodes is constructed in the paper. With the help of the strong learning capability of the model, when the learning data samples are complete, MLE algorithm is used to adjust the value of the conditional probability table of the model to the special machine. Consequently the model is ready to reason and calculate.
出处 《河南科学》 2007年第1期98-100,共3页 Henan Science
关键词 故障诊断 BAYES网络 网络学习 faults diagnosis Bayes network learning of the network
  • 相关文献

参考文献3

  • 1沈民奋,孙丽莎著..现代随机信号与系统分析[M].北京:科学出版社,1998:315.
  • 2慕春棣,tsinghua.edu.cn,戴剑彬,叶俊.用于数据挖掘的贝叶斯网络[J].软件学报,2000,11(5):660-666. 被引量:100
  • 3韩捷等编著..旋转机械故障机理及诊断技术[M].北京:机械工业出版社,1997:241.

二级参考文献11

  • 11.Chickering D. Learning equivalence classes of Bayesian networks structures. In: Horvitz E, Jensen F ed. Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1996. 54~61 被引量:1
  • 22.Geriger D, Hekerman D. A charactererization of the Dirichlet distribution with application to learning Bayesian networks. In: Besnard P, Hanks S eds. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc., 1995. 196~207 被引量:1
  • 33.Heckman D. A Bayesian approach for learning causal networks. In: Besnard P, Hanks S eds. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1995. 285~295 被引量:1
  • 44.Heckman D, Geiger D, Chickering D. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 1995,20(3):197~243 被引量:1
  • 55.Heckman D, Shachter R. Decision-Theoretic foundations for causal reasoning. Journal of Artificial Intelligence Research, 1995,3:405~430 被引量:1
  • 66.Heckman D, Mandani A, Wellman M. Real-World applications of Bayesian networks. Communications of the ACM, 1995,38(3):38~45 被引量:1
  • 77.Buntine W. Theory refinement on Bayesian networks. In: Proceedings of the 7th Conference on Uncertainty in Artificial Intelligence. Los Angeles, CA: Morgan Kaufmann Publishers, Inc., 1991. 52~61 被引量:1
  • 88.Cooper G, Herskovits E. A Bayesian method for the introduction of probabilistic networks from data. Machine Learning, 1992,9(4):309~347 被引量:1
  • 99.Russell S, Binder J, Koller D et al. Local learning in probabilistic networks with hidden variables. In: Cooper G F, Moral S ed. Proceedings of the 14th International Joint Conference on Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1998. 1146~1152 被引量:1
  • 101999-03-15 被引量:1

共引文献99

同被引文献7

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部