期刊文献+

多边形单元上有理函数插值的误差估计

Error Estimation of Rational Functions Interpolation on Polygonal Elements
下载PDF
导出
摘要 采用有理函数可以在任意凸多边形单元上,构造出满足单元间协调性要求的插值函数.对多边形上的有理函数插值的误差进行了分析,利用有理函数插值形函数的性质和二元函数的Taylor展开式,证明了有理函数插值的误差估计不等式。 Using rational shape functions on polygonal elements, it is convenient to construct the interpolation function satisfying with consistency of inter-element. In this paper, error estimation of rational function interpolation within polygonal element is developed by using the properties of rational shape functions and Taylor expression. The ineuualitv of error estimating is given for rational function interoolation.
出处 《河南科学》 2007年第1期11-13,共3页 Henan Science
基金 山东建筑大学博士基金 科研基金资助项目(XN050103)
关键词 多边形单元 有理函数插值 有理单元法 误差估计 polygonal element rational function interpolation rational element method error estimation
  • 相关文献

参考文献11

二级参考文献25

  • 1范亚玲,张远高,陆明万.二维任意多边形有限单元[J].力学学报,1995,27(6):742-746. 被引量:20
  • 2Ghosh, S. Mallett R L. Voronoi Cell finite elements[J]. Computers & Structures, 1994, 50(1), 33-46. 被引量:1
  • 3Ghosh, S. Moorthy S. Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi Cell finite element method[J]. Comput Methods Appl Mech Engrg, 1995, 121, 373-409. 被引量:1
  • 4Ghosh S. , Lee K, Moorthy S. Multiple scale analysis of heterogeneous elastic structures using homogenization theory and Voronoi Cell finite element method[J]. Int J Structures, 1995, 27-62. 被引量:1
  • 5Belikov V V, Ivanov V D, Kontorovich V K, Korytnik S A, Semenov A Y. The non-Sibson interpolation: a new method of interpolation of the values of a function on an arbitrary set of Doints[J]. Computational Mathematics and Mathematical Physics, 1997, 37(1) :9-15. 被引量:1
  • 6Belikov V V, Semenov A Y. Non-Sibsonian interpolation on arbitrary system of points in Euclidean space and adaptive isolines generation[J]. Applied Numerical Mathematics. 2000, 32:371-387. 被引量:1
  • 7Semenov A Y, Belikov V V. New non-Sibsonian interpolation on arbitrary system of points in Euclidean space[C]. In: 15^th IMACS World Congress. Vol.2, Numerical Mathematics, Wissen Techn Verlag, Berlin, 1997, 237-242. 被引量:1
  • 8Kokichi Sugihara. Surface interpolation based on new local coordinates[J]. Computer-Aided Design, 1999, 31:51-58. 被引量:1
  • 9Hisamoto Hiyoshi, Kokiehi Sugihara. Two generalizations of an interpolant based Voronoi diagrams[J]. International Journal of Shape Modeling, 1999, 5(2):219-231. 被引量:1
  • 10Hisamoto Hiyoshi. Study on interpolation based on Voronoi diagrams[D]. PhD Dissertation, University of Tokyo, Tokyo, 2000. 被引量:1

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部