期刊文献+

求解弹性力学问题的有理单元法 被引量:7

Rational element method for solving elastic problems
下载PDF
导出
摘要 传统的位移有限元法采用多项式形式的位移试函数,对于边数大于4的多边形单元,构造满足单元间协调性要求的多项式形式位移插值函数是一件困难的工作。本文利用逆距离权插值的思想并考虑到单元节点的分布,建立了边数大于4多边形单元上的有理函数形式的形函数。利用有理试函数,采用Galerkin法推导出求解平面弹性力学问题的有理单元法。采用有理单元法求解弹性力学问题,求解区域根据需要可以划分为任意多边形单元,极大地提高了网格划分的灵活性。有理单元法不依赖等参变换,不同单元的形函数表达形式统一,方便计算程序的编写。 In this paper by combining the ideas of inverse distance weighted interpolation and considering element nodes distribution, the shape functions of rational function forms are constructed on a polygonal element. The rational trial functions are automatically to ensure interelement compatibility. Adopting Galerkin method and rational trial function, the rational element method for solving elastic problems is derived. The computing domain could be divided into arbitrary polygonal elements. So it is very flexible in grid generation. The rational element method is independent of isoparametric transformation. Rational shape function expressions of different edge-number elements are similar in forms, so it is easy to deal with the program.
作者 王兆清 冯伟
出处 《计算力学学报》 EI CAS CSCD 北大核心 2006年第5期611-616,共6页 Chinese Journal of Computational Mechanics
基金 山东建筑大学科研基金资助项目
关键词 弹性力学 多边形单元 有理函数形函数 有理函数插值 有理单元法 数值方法 elasticity problem polygonal element ratioanl shape functions rational functioninterpolation rational element method
  • 相关文献

参考文献11

二级参考文献16

  • 1钱觉时,邹定祺.“数值砼”-砼材料细观结构的模拟[J].重庆建筑工程学院学报,1994,16(2):37-45. 被引量:5
  • 2Ghosh, S. Mallett R L. Voronoi Cell finite elements[J]. Computers & Structures, 1994, 50(1), 33-46. 被引量:1
  • 3Ghosh, S. Moorthy S. Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi Cell finite element method[J]. Comput Methods Appl Mech Engrg, 1995, 121, 373-409. 被引量:1
  • 4Ghosh S. , Lee K, Moorthy S. Multiple scale analysis of heterogeneous elastic structures using homogenization theory and Voronoi Cell finite element method[J]. Int J Structures, 1995, 27-62. 被引量:1
  • 5Belikov V V, Ivanov V D, Kontorovich V K, Korytnik S A, Semenov A Y. The non-Sibson interpolation: a new method of interpolation of the values of a function on an arbitrary set of Doints[J]. Computational Mathematics and Mathematical Physics, 1997, 37(1) :9-15. 被引量:1
  • 6Belikov V V, Semenov A Y. Non-Sibsonian interpolation on arbitrary system of points in Euclidean space and adaptive isolines generation[J]. Applied Numerical Mathematics. 2000, 32:371-387. 被引量:1
  • 7Semenov A Y, Belikov V V. New non-Sibsonian interpolation on arbitrary system of points in Euclidean space[C]. In: 15^th IMACS World Congress. Vol.2, Numerical Mathematics, Wissen Techn Verlag, Berlin, 1997, 237-242. 被引量:1
  • 8Kokichi Sugihara. Surface interpolation based on new local coordinates[J]. Computer-Aided Design, 1999, 31:51-58. 被引量:1
  • 9Hisamoto Hiyoshi, Kokiehi Sugihara. Two generalizations of an interpolant based Voronoi diagrams[J]. International Journal of Shape Modeling, 1999, 5(2):219-231. 被引量:1
  • 10Hisamoto Hiyoshi. Study on interpolation based on Voronoi diagrams[D]. PhD Dissertation, University of Tokyo, Tokyo, 2000. 被引量:1

共引文献30

同被引文献85

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部