期刊文献+

多边形有限元研究进展 被引量:20

ADVANCES IN POLYGONAL FINITE ELEMENT METHOD
下载PDF
导出
摘要 有限元法是数值求解偏微分方程边值问题的重要方法,采用不规则多边形单元网格,可以方便有效地模拟材料的力学性能,又使得区域网格剖分变得灵活方便.特别是对于复杂的几何形状,多边形单元网格具有更大的优势.本文对国内外有关多边形有限元法的最新进展作了初步的总结和评述,主要以基于位移法的多边形有限元为主.论述了多边形有限元的发展历史,给出了多边形单元上的Wachspress插值、Laplace插值和重心坐标的一些最新研究成果.与经典有限元法形函数为多项式形式不同,多边形单元的形函数为有理函数或者无理函数形式.多边形单元插值形函数满足线性完备性,可以再现线性位移场,像经典有限元法一样直接施加本质边界条件;插值函数在多边形的边界上是线性的,确保不同单元间的自动协调.不同单元的插值形函数表达公式形式统一,方便混合单元网格计算的程序编写.提出了多边形有限元法今后需要研究的问题. The finite element method is an important method to solve boundary value problems. In two dimensional problems, the constant strain three-node triangular element and the bilinear four-node quadrilateral element are widely used. Irregular polygonal elements can be used not only to conveniently and effectively simulate mechanical properties of materials, but also to enhance flexibility in meshing. For complex geometries, the polygonal element grid enjoys greater advantages. In the past decade, researchers have shown interestis in the numerical methods based on polygonal elements, and have obtained some new results. In this paper the advances in polygonal finite elements are reviewed. The development of polygonal finite elements is discussed, including Wachspress interpolation, Laplace interpolation and barycentric coordinates. Unlike the polynomial form of shape functions in the classical finite element, the shape functions of a polygonal element can take both rational and irrational forms. The shape functions interpolate nodal values, satisfy linear completeness, can be used to reconstruct the linear displacement field, and permit the direct imposition of essential boundary conditions as in the conventional finite element method. They are linear on the boundary of a polygonal element, which ensures automatically the consistency of inter-elements. The shape functions have a uniform formulation for different side number elements, so one can conveniently program for a variety of meshes. Some issues for future development of polygonal finite elements are also discussed.
作者 王兆清
出处 《力学进展》 EI CSCD 北大核心 2006年第3期344-353,共10页 Advances in Mechanics
基金 山东建筑大学科研基金(XN050103)资助项目~~
关键词 有限元法 多边形单元 Wachspress插值 多边形Laplace插值 多边形重心坐标 finite element method, polygonal element, Wachspress' interpolation, Laplace interpolation, barycentric coordinates
  • 相关文献

参考文献85

  • 1Leon L,Mishnaevsky Jr,Siegfried Schmauder.Continuum mesomechanical finite element modeling in materials development:A state-of-the-art review.Appl Mech Rev,2001,54(1):49~68 被引量:1
  • 2Leon L Mishnaevsky Jr,Siegfried Schmauder,陈少华,魏悦广.在材料研制中的连续介质细观力学有限元建模现状评论[J].力学进展,2002,32(3):444-466. 被引量:9
  • 3王兆清..有理单元法研究[D].上海大学,2004:
  • 4Sheu G Y.Deformations resulting from the movements of a shear or tensile fault in an anisotropic half space.International Journal for Numerical and Analytical Methods in Geomechanics,2004,28(5):437~463 被引量:1
  • 5Gautam Dasgupta,Elisabeth Anna Malsch.Boundary element color interpolation for instrumentation,imaging and internet graphics industries.Engineering Analysis with Boundary Elements,2002,26(5):379~389 被引量:1
  • 6Ghosh S,Mallett R L.Voronoi cell finite elements.Computers & Structures,1994,50(1):33~46 被引量:1
  • 7Eugene L Wachspress.A Rational Finite Element Basis.New York:Academic Press,Inc,1975 被引量:1
  • 8Ghosh Somnath,Lee Kyunghoon,Moorthy Suresh.Multiple scale analysis of heterogeneous elastic structures using homogenization theory and voronoi cell finite element method.International Journal of Solids and Structures,1995,32(1):27~62 被引量:1
  • 9Ghosh Somnath,Kyunghoon Lee,Moorthy Suresh.Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model.Computer Methods in Applied Mechanics and Engineering,1996,132(1-2):63~116 被引量:1
  • 10Ghosh Somnath,Nowak Zdzislaw,Kyunghoon Lee.Quantitative characterization and modeling of composite microstructures by Voronoi cells.Acta Materialia,1997,45(6):2215~2234 被引量:1

二级参考文献270

共引文献98

同被引文献219

引证文献20

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部