期刊文献+

多边形单元平均值插值的误差估计及应用

Error Estimation and Mean Value Interpolation on Polygonal Elements
下载PDF
导出
摘要 对多边形单元上平均值插值的误差进行分析,利用平均值插值形函数的性质和二元函数的Taylor展开式,证明平均值插值的误差估计不等式.给出平均值插值应用于凸域温度分布插值近似的算例,数值算例表明平均值插值能够表现出区域温度分布的特征. With shape functions of mean value interpolation and a bivariate Taylor expression, error estimation of mean value interpolation within polygonal elements is analyzed. Inequality of error estimation for mean value interpolation is derived. Mean value interpolation in the approxmation of temperature distributions on a convex domain is shown.
出处 《计算物理》 CSCD 北大核心 2007年第2期217-221,共5页 Chinese Journal of Computational Physics
基金 山东建筑大学博士基金及科研基金(XN050103)资助项目
关键词 多边形单元 平均值插值 误差估计 温度分布 polygonal element mean value interpolation error estimation temperature distribution
  • 相关文献

参考文献4

二级参考文献35

  • 1范亚玲,张远高,陆明万.二维任意多边形有限单元[J].力学学报,1995,27(6):742-746. 被引量:20
  • 2Ghosh, S. Mallett R L. Voronoi Cell finite elements[J]. Computers & Structures, 1994, 50(1), 33-46. 被引量:1
  • 3Ghosh, S. Moorthy S. Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi Cell finite element method[J]. Comput Methods Appl Mech Engrg, 1995, 121, 373-409. 被引量:1
  • 4Ghosh S. , Lee K, Moorthy S. Multiple scale analysis of heterogeneous elastic structures using homogenization theory and Voronoi Cell finite element method[J]. Int J Structures, 1995, 27-62. 被引量:1
  • 5Belikov V V, Ivanov V D, Kontorovich V K, Korytnik S A, Semenov A Y. The non-Sibson interpolation: a new method of interpolation of the values of a function on an arbitrary set of Doints[J]. Computational Mathematics and Mathematical Physics, 1997, 37(1) :9-15. 被引量:1
  • 6Belikov V V, Semenov A Y. Non-Sibsonian interpolation on arbitrary system of points in Euclidean space and adaptive isolines generation[J]. Applied Numerical Mathematics. 2000, 32:371-387. 被引量:1
  • 7Semenov A Y, Belikov V V. New non-Sibsonian interpolation on arbitrary system of points in Euclidean space[C]. In: 15^th IMACS World Congress. Vol.2, Numerical Mathematics, Wissen Techn Verlag, Berlin, 1997, 237-242. 被引量:1
  • 8Kokichi Sugihara. Surface interpolation based on new local coordinates[J]. Computer-Aided Design, 1999, 31:51-58. 被引量:1
  • 9Hisamoto Hiyoshi, Kokiehi Sugihara. Two generalizations of an interpolant based Voronoi diagrams[J]. International Journal of Shape Modeling, 1999, 5(2):219-231. 被引量:1
  • 10Hisamoto Hiyoshi. Study on interpolation based on Voronoi diagrams[D]. PhD Dissertation, University of Tokyo, Tokyo, 2000. 被引量:1

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部