期刊文献+

AproPhos:基于AdaBoost方法的蛋白质磷酸化修饰预测系统 被引量:2

AproPhos:Protein Phosphorylation Prediction Based on AdaBoost
下载PDF
导出
摘要 磷酸化是最重要的蛋白质翻译后修饰之一,随着蛋白质磷酸化修饰数据不断积累,利用已有数据进行蛋白质磷酸化修饰位点预测的条件日益成熟。利用修饰位点附近氨基酸性质取代氨基酸种类作为特征,对现有516种氨基酸性质做了详细分析和筛选,提出了采用AdaBoost方法进行特征选择和分类器训练的磷酸化修饰位点预测系统AproPhos,该系统在特异性高于已有预测系统(约2%)的基础上,大大提高了预测的灵敏度(约10%),使磷酸化位点预测方法用于提高磷酸化蛋白质质谱鉴定效率成为可能,并有发现磷酸化修饰位点氨基酸性质分布的潜力。 Protein phosphorylation is one of the most important post-translational modifications (PTMs). With the recent increase in protein phosphorylated sites identified, in silico prediction of potential phosphorylation sites may facilitate the identification of phosphorylated protein. A new phosphorylated sites prediction method named AproPhos uses amino acid properties as features and applies AdaBoost to feature selection and classification. Different from other prediction methods with lower sensitivity, our method shows about 10% higher sensitivity as well as about 2% higher specificity. So it may enhance the efficiency of phosphorylated protein identification with tandem mass spectra.
出处 《微电子学与计算机》 CSCD 北大核心 2007年第7期35-39,共5页 Microelectronics & Computer
基金 国家"973"计划课题(2002CB713807) 国家重大专项(2004BA711A21) 中国科学院计算技术研究所领域前沿青年创新基金
关键词 磷酸化 预测 氨基酸性质 ADABOOST phosphorylation prediction amino acid properties AdaBoost
  • 相关文献

参考文献6

  • 1Hunter T.Signaling-2000 and beyond[J].Cell,2000,100:113-127. 被引量:1
  • 2Kim J H,Lee J,Oh J,et,al.Prediction of phosphorylation sites using SVMs[J].Bioinformatics,2004,20(17):3179-3184. 被引量:1
  • 3Kreegipuu A,Blom N,Brunak S.PhosphoBase,a database of phosphorylation sites:release 2.0[J].Nucleic Acids Research,1999,27(1):237-239. 被引量:1
  • 4Kawashima S,Ogata H,Kanehisa M.AAindex:amino acid index database[J].Nucleic Acids Res,2000,28(1):374. 被引量:1
  • 5Schapire J H.The strength of weak learnability[J].Machine Learning,1990,5(2):197-227. 被引量:1
  • 6Chang R E,Lin C J.LIBSVM:a library for support vector machines[CP].Software available at http://www.csie.ntu.edu.tw/-cjlin/libsvm,2001. 被引量:1

同被引文献11

  • 1Wu Qiang, Huaifeng Zhang, Wenjing Jia, et al. Carplate detection using cascaded tree-style learner based on hybrid object features[EB/OL]. [2009 - 03 - 15]. http://portal. acm. org. 被引量:1
  • 2Freund Y, Schapire R E. Experiments with a new boosting algorithm[C]//Proc of the 13th International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 1996:148 - 156. 被引量:1
  • 3Schapire R E. A brief introduction to boosting[C]//Proc of the 16th International Joint Conference of Artificial Intelligence. San Francisco: Publishers Inc, 1999: 1401-1406. 被引量:1
  • 4Viola P, Jones M. Rapid object detection using a boosted cascade of simple features[J]. IEEE Computer Soc. Computer Vision and Pattern Recognition, 2001 ( 1 ) : 511 - 518. 被引量:1
  • 5Xiao Rong, Zhu Long, Hongiiang Zhang. Boosting chain learning for object detection[C]//ICCV 2003. China: Beijing, 2003 : 709 - 715. 被引量:1
  • 6Wu J, Regh J M, Mullin M D. Leaming a rare event detection cascade by direct feature selection [C]// NIPS. Canada: Vancouver, 2004. 被引量:1
  • 7Freund Y, Schapire R E. A decision- theoretic generalization of online learning and an application to boosting [ J ]. Computer and System Sciences, 1997, 55( 1 ) : 119 - 139. 被引量:1
  • 8Kim J H, Kwon B G, Kim J Y, et al. Method to improve the performance of the AdaBoost algorithm by combining weak classifiers[EB/OL]. [2009 - 03 - 10]. http://www. ieee. org/portal/site. 被引量:1
  • 9王明会,李春华,陈慰祖,王存新.基于信息熵的磷酸化作用预测[J].中国科学(C辑),2007,37(6):689-696. 被引量:3
  • 10Gwo-Yu Chuang,Jeffrey C. Boyington,M. Gordon Joyce,Jiang Zhu,Gary J. Nabel,Peter D. Kwong,Ivelin Georgiev.Computational prediction of N-linked glycosylation incorporating structural properties and patterns[J].Bioinformatics.2012(17) 被引量:1

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部