期刊文献+

一种改进AdaBoost算法的方法 被引量:4

One Improved Method for AdaBoost Algorithm
下载PDF
导出
摘要 针对传统AdaBoost算法的不足,分析了分类器训练时间长和训练过程中容易出现训练结果对训练样本严重收敛的问题(过训练),并提出了解决这一问题的有效方法.新方法主要将特征值和排序结果进行缓存以及对训练样本及时更新.使用该方法训练级联车牌检测器,实验结果表明,新方法较好地解决了传统AdaBoost算法中所出现的过训练和训练耗时的问题,在提高检测率的同时降低了误检率,并且训练时间缩短了50%左右. Focusing on the disadvantages of classical AdaBoost algorithm,this paper mainly analyzes the issue that the training time for classifiers is time-consuming and in training process the training results severely constringe the training samples(excessive training)and a new method is advanced to avoid the problems. The new method is to buffer the computational results of sorted feature values and update the training samples in time. As a result,using the method to train a cascade license plate,the experimental results show that the new method does not lead to the issue of excessive training and time consuming like classical AdaBoost often does,and moreover,the training time is shortened to 50 percent with a high detection rate and a low false alarm rate.
出处 《微电子学与计算机》 CSCD 北大核心 2010年第7期40-43,48,共5页 Microelectronics & Computer
基金 重庆市教委资助项目(KJ090519)
关键词 ADABOOST算法 样本更新 特征值 过训练 车牌检测 AdaBoost sample update feature value excessive training license plate detection
  • 相关文献

参考文献9

  • 1Wu Qiang, Huaifeng Zhang, Wenjing Jia, et al. Carplate detection using cascaded tree-style learner based on hybrid object features[EB/OL]. [2009 - 03 - 15]. http://portal. acm. org. 被引量:1
  • 2Freund Y, Schapire R E. Experiments with a new boosting algorithm[C]//Proc of the 13th International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 1996:148 - 156. 被引量:1
  • 3Schapire R E. A brief introduction to boosting[C]//Proc of the 16th International Joint Conference of Artificial Intelligence. San Francisco: Publishers Inc, 1999: 1401-1406. 被引量:1
  • 4Viola P, Jones M. Rapid object detection using a boosted cascade of simple features[J]. IEEE Computer Soc. Computer Vision and Pattern Recognition, 2001 ( 1 ) : 511 - 518. 被引量:1
  • 5Xiao Rong, Zhu Long, Hongiiang Zhang. Boosting chain learning for object detection[C]//ICCV 2003. China: Beijing, 2003 : 709 - 715. 被引量:1
  • 6Wu J, Regh J M, Mullin M D. Leaming a rare event detection cascade by direct feature selection [C]// NIPS. Canada: Vancouver, 2004. 被引量:1
  • 7Freund Y, Schapire R E. A decision- theoretic generalization of online learning and an application to boosting [ J ]. Computer and System Sciences, 1997, 55( 1 ) : 119 - 139. 被引量:1
  • 8Kim J H, Kwon B G, Kim J Y, et al. Method to improve the performance of the AdaBoost algorithm by combining weak classifiers[EB/OL]. [2009 - 03 - 10]. http://www. ieee. org/portal/site. 被引量:1
  • 9蔡津津,赵杰煜,王乐珩.AproPhos:基于AdaBoost方法的蛋白质磷酸化修饰预测系统[J].微电子学与计算机,2007,24(7):35-39. 被引量:2

二级参考文献6

  • 1Hunter T.Signaling-2000 and beyond[J].Cell,2000,100:113-127. 被引量:1
  • 2Kim J H,Lee J,Oh J,et,al.Prediction of phosphorylation sites using SVMs[J].Bioinformatics,2004,20(17):3179-3184. 被引量:1
  • 3Kreegipuu A,Blom N,Brunak S.PhosphoBase,a database of phosphorylation sites:release 2.0[J].Nucleic Acids Research,1999,27(1):237-239. 被引量:1
  • 4Kawashima S,Ogata H,Kanehisa M.AAindex:amino acid index database[J].Nucleic Acids Res,2000,28(1):374. 被引量:1
  • 5Schapire J H.The strength of weak learnability[J].Machine Learning,1990,5(2):197-227. 被引量:1
  • 6Chang R E,Lin C J.LIBSVM:a library for support vector machines[CP].Software available at http://www.csie.ntu.edu.tw/-cjlin/libsvm,2001. 被引量:1

共引文献1

同被引文献34

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部