摘要
利用同余式、递归序列的方法证明了不定方程x3+8=35y2仅有整数解(x,y)=(-2,0),(3±1);x3-8=35y2仅有整数解(x,y)=(2,0).
In this paper, the author has proved that the Diophantine equation x^3 ± 8 = 35y^2 has only integer solutions(x,y) = (-2,0) ,(3 ±1);(x^3 -8) =35y^2 has only integer solution(x,y) = (2,0).
出处
《重庆工商大学学报(自然科学版)》
2006年第5期462-464,共3页
Journal of Chongqing Technology and Business University:Natural Science Edition
基金
重庆教委科研基金项目(010204)
关键词
不定方程
整数解
递归数列
JACOBI符号
Diophantine equation
integer solution
recurrent sequence
Jacobi symbol