期刊文献+

非平稳弱相依高斯序列次最大值的位置和高度的联合分布 被引量:2

The Joint Asymptotic Distribution of Location and Height of the Second Maxima for Nonstationary,Weakly Dependent Normal Sequences
下载PDF
导出
摘要 在条件1/n sum from i=[cn] to [dn]exp(an*(mi-mn*)-1/2(mi-mn*)2)→d-c n→∞,0<c<d≤1 下,得到了非平稳弱相依高斯序列次最大值的位置和高度的联合渐近分布. Under the condition 1/n∑i=[cn]^[dn]exp(an^*(mi-mn^*)-1/2(mi-mn^*)^2)→d-c n→∞,0〈c〈d≤1 the joint asymptotic distribution of the location and the height of the second maximum for a kind of nonstationary, weakly dependent Gaussian sequences has been given.
作者 陈群 彭作祥
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第6期987-991,共5页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(70371061) 重庆市自然科学基金资助项目(CSTC 2005BB8098)
关键词 非平稳 弱相依 高斯序列 位置 高度 nonstationary weakly dependent gaussian sequences location height
  • 相关文献

参考文献5

二级参考文献13

  • 1Galambos J. The Asymptotic Theory of Extreme Order Statistics [M] . New York: John Wiley, 1978. 280- 299. 被引量:1
  • 2Leadbetter M R, Georg Lindgren, Holger Rottzen. Extremes and Related Properties of Random Sequences and Processes [ M ] . New York: Springer-Verlag, 1983. 138- 141. 被引量:1
  • 3Resnick S I.Extreme Valuem,Regular Varying and Point Processes[M].New York:Springer-Verlag,1987 被引量:1
  • 4Leadbetter M R. Extreme and Related Properaes of Random Sequences and Processes[M]. New York: Springer-Verlag, 1983. 被引量:1
  • 5Anderson, Turkman. The Joint Limiting Distribution of the Sums and Maximum of Stationary Sequences [J]. J Appl Prob, 1991, 28:33 - 44. 被引量:1
  • 6McCormick Sun. Sums and Maximum of Dicsrete Stationary Processes[J]. J Appl Prob, 1993, 20:863 - 876. 被引量:1
  • 7Tailen Hsiag. A Note on the Asymptotic Independence of the Sum and Maximum of Strongly Mixing Stationary Random Variables[J].The Annala of Statistics, 1995, 2: 939- 947. 被引量:1
  • 8Ho Hwai-chung, McCormick W P. Asymptotic Distribution of Sum and Miximum for Gaussian Processes[J]. J Appl Prob, 1998, 36:1031 - 1044. 被引量:1
  • 9Ho Hwai-chung, Tailen Hsing. On the Asymptotic Joint Distribution of the Sum and Maximum of Stationary Normal Random Variables[J].J Appl Prob, 1996, 33:138 - 145. 被引量:1
  • 10Janoa Galambos. The Asymptotic Theory of Extreme Order Statistics[M]. New York: John Wiley & Sons, 1978. 被引量:1

共引文献6

同被引文献16

  • 1陈志成,彭作祥.平稳高斯向量序列最大值的几乎处处中心极限定理[J].西南大学学报(自然科学版),2007,29(3):23-27. 被引量:4
  • 2庄光明,彭作祥.弱相依序列最大值的几乎处处中心极限定理[J].西南大学学报(自然科学版),2007,29(1):1-4. 被引量:5
  • 3Berkes I, Csaki E. A Universal Result in Almost Sure Central Limit Theory [J].Stochastic Process Application, 2001, 94(1) : 105 - 134. 被引量:1
  • 4Cheng S, Peng L, Qi Y. Almost Sure Convergence in .Extreme Value Theory [J]. Math Nachr, 1998, 190: 43- 50. 被引量:1
  • 5Fahrner I, Stadtmuller U. On Almost Sure Max limit Theorems [J]. Statistic Probability Letters, 1998, 37(3): 229--236. 被引量:1
  • 6Csaki E, Gonchigdanzan K. Almost Sure Limit Theorems for the Maximum of Stationary Gaussian Sequences [J]. Statistic Probability Letters, 2002, 58(2): 195- 203. 被引量:1
  • 7Leadbetter M R, Lindgren G, Rootzen H. Extremes and Related Properties of Random Sequences and Processes [M]. New York: Springer, 1983. 被引量:1
  • 8Mladenovic P, Piterbarg V. On Asymplotic Distribution of Maxima of Complete and Incomplete Samples from Stationary Sequences [J]. Stochastic Process Application, 2006, 116(12): 1977--1991. 被引量:1
  • 9Xia Lin Li, Marc Parizeau, Rejean Plamondon. Training Hidden Markov Models with Multiple Observation A Combinatorial Method [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2000, 22(4) : 371 - 377. 被引量:1
  • 10Rabiner L R. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition [J]. Proc IEEE,1989, 77(2):257-286. 被引量:1

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部