摘要
{X(t),0≤t≤T}为均方可微非平稳高斯过程。具有渐近中心化的均值m(t)和常数的方差, NT(·)为{X(t),0≤t≤T}上穿过水平uT的点过程,则在一定的条件下匕穿过点过程NT(·)依分布收敛到一Poisson过程.
Abstract Let {X(t), 0 ≤ t ≤ T} be a non-stationary and differentiable Gaussian process with asymptotic centered mean re(t) and constant variance. Let NT(·) be the number of upcrossings of level UT by the process X(t) on the interval [0, T]. Under some conditions, the point process NT(·) formed by the number of upcrossings converges in distribution to a Poisson process.
出处
《应用数学学报》
CSCD
北大核心
2006年第5期848-855,共8页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金(70371061号)
重庆市教委科学技术研究资助项目(批准号: KJ051203)
关键词
非平稳可微高斯过程
上穿过数
点过程
non-stationary differentiable Gaussian processes
point processes
upcrossings