期刊文献+

B-(p,r)-不变凸规划问题的Wolfe型对偶 被引量:5

Wolfe Duality for Programming Problems With B-(p, r)-Invexity Functions
下载PDF
导出
摘要 B-(p,r)-不变凸函数是一类新的广义凸函数.这篇文章利用B-(p,r)-不变凸函数建立了目标函数和约束函数均可微时的多目标规划问题的Wolfe型对偶,证明了目标函数和约束函数在B-(p,r)-不变凸函数限制下的弱对偶、强对偶和严格逆对偶定理,其结论具有一般性,拓宽了涉及不变B-凸函数、(p,r)-不变凸函数和不变凸函数的文献中关于Wolfe型对偶的结论. B-(p, r)-invexity is a new generalized invex function. By using B-( p, r )-invexity functions, the wolfe dual of the multiobjective programming problems is considered, in which the objective and the con- straint functions are differentiable. The weak, strong and strict converse duality results are established, these results are obtained under B-(p, r)-invexity assumptions on objective and the constraint functions. The work generalizes many results on programming problems with B-invexity functions, (p, r)-invexity functions and invex functions.
出处 《北京工业大学学报》 CAS CSCD 北大核心 2005年第6期666-669,共4页 Journal of Beijing University of Technology
关键词 多目标规划 B-(p r)-不变凸函数 对偶 有效解 multiobjective programming invexity functions duality efficient solution
  • 相关文献

参考文献13

  • 1HANSON M A. On sufficiency of the Kuhn-Tucker conditions [J]. Journal of Mathematical Analysis and Applications,1981, 80: 545-550. 被引量:1
  • 2DAS L N, NANDA S. Proper efficiency conditions and duality for multiobjective programming problems involving semilocally invex functions[J ]. Optimization, 1995, 34: 43-51. 被引量:1
  • 3GOMEZ R O. Generalized conivexity in multiobjective programming[J]. Journal of Mathematical Analysis and Applications,1999, 233: 205-220. 被引量:1
  • 4EGUDO R R, HANSON M A. Multi-objective duality with invexity[J]. Journal of Mathematical Analysis and Applications,1987, 126: 469-477. 被引量:1
  • 5BECTOR C R, SINGH C. B-vex functions[J]. Journal of Optimization Theory and Applications, 1991, 71; 237-253. 被引量:1
  • 6BECTOR C R. Duality for multiobjective vex programming involving n-set functions[J]. Journal of Mathematical Analysis and Applications, 1996, 202: 701-726. 被引量:1
  • 7MISHRA S K. On multiple-objective optimization with generalized univexity[J]. Journal of Mathematical Analysis and Applications, 1998, 224: 131-148. 被引量:1
  • 8BECTOR C R. Generalized B-vex programming[J]. Journal of Optimization Theory and Applications, 1993, 76: 561-587. 被引量:1
  • 9ANTCZAK T. On (p, r)-invexity-type nonlinear programming problems[J ]. Journal of Mathematical Analysis and Applications, 2001, 264: 382-397. 被引量:1
  • 10ANTCZAK T. (p, r)-invex sets and functions[J]. Journal of Mathematical Analysis and Applications, 2001, 263: 355-379. 被引量:1

同被引文献48

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部