摘要
B-(p,r)-预不变凸函数是一类新的广义凸函数,它是B-(p,r)-不变凸函数的推广。本文讨论了B-(p,r)-预不变凸函数的一些性质;然后利用B-(p,r)-预不变凸型函数建立了目标函数和约束函数均可微的多目标规划问题的W olfe型对偶,证明了目标函数和约束函数在B-(p,r)-预不变凸型函数条件下的弱对偶,强对偶和严格逆对偶定理;最后给出了B-(p,r)-预不变凸函数在关于目标函数的极小化问题中的两个重要应用,即建立目标函数在B-(p,r)-预不变凸函数条件下的极小化问题(P),证明了它的局部最优解是全局最优解,它的解集是p-不变凸集,且得出如果问题(P)存在最优解,则最优解唯一。本文结论具有一般性,推广了涉及预不变凸函数、B-预不变凸函数和(p,r)-预不变凸函数文献的一些结论。
B-(p,r)-pre-invex functions is a generalized convex functions.It's a generalization of the B-(p,r)-invex functions.In this paper,firstly,some properties of the B-(p,r)-pre-invex functions are discussed.Secondly,by using the B-(p,r)-pre-invex functions,Wolfe duality of the multi-objective programming problems is considered,in which the objective and the constraint functions are differentiable.The weak,strong and strict converse duality results are established.Finally,we give two important applications about minimize problem which objective function is B-(p,r)-pre-invex functions.The minimize problem is established under B-(p,r)-pre-invexity assumption on objective function.We obtain that a local optimum of this minimize problem is also a global optimum,and the optimal set is p-invex set.If optimum solution exists on minimize problem(P),it must be unique.The work generalizes some results on programming problems with pre-invex functions,B-pre-invex functions and(p,r)-pre-invex functions.
出处
《重庆师范大学学报(自然科学版)》
CAS
2010年第6期1-6,共6页
Journal of Chongqing Normal University:Natural Science
基金
重庆市科委研究项目(No.CSTC2008BB0346)
重庆市教委资助课题(No.KJ100405,No.KJ070404)
重庆市高教研究项目(No.0833141)