期刊文献+

ARTNIDS:基于自适应谐振理论的网络入侵检测系统 被引量:8

A Network Intrusion Detection System Based on Adaptive Resonance Theory
下载PDF
导出
摘要 分析了现有的入侵检测方法,设计了基于自适应谐振理论的网络入侵检测系统(ARTNIDS).它采用了一种全新的行为表示方法,即根据网络数据包结构定义网络行为特征变量;利用改进的自适应谐振理论算法,提高了学习效率,使丢包率由15%左右降低到10%以下,实现了无监督和在线实时学习;提出的类似Hamming距离的检测算法,使误报率低于10%.依上述方法构造的原型系统经实验证明能高效地检测出局域网内的入侵行为. A network intrusion detection system based on adaptive resonance theory (ARTNIDS) is put forward. It detects network intrusions by using anomaly-based detection method. Since the heads of network datagrams include almost all the control information and all datagrams can be caught through an efficient method, the description of network behavior relies upon the datagrams. The advantage of adaptive resonance theory ensures that ARTNIDS can study in real time and in an unsupervised way, which is essential to anomaly-based detection. The modified adaptive resonance theory algorithm improves the efficiency of studying and the datagram missing rate has been reduced from 15% to 10%. A similar Hamming distance method is adopted in the detection, which is effective in reducing false positive errors and false negative errors; the error rate is less than 10%. The experimental results show that the intrusion detection system based on adaptive resonance theory can detect intrusion behavior in local area network accurately.
出处 《计算机学报》 EI CSCD 北大核心 2005年第11期1882-1889,共8页 Chinese Journal of Computers
基金 吉林省自然科学基金(20030522-2) 振兴东北老工业基地科技公关项目(04-02GG158)资助
关键词 入侵检测 自适应谐振理论 HAMMING距离 网络 数据包 intrusion detection adaptive resonance theory Hamming distance network datagram
  • 相关文献

参考文献18

  • 1Theuns V., Ray H.. Intrusion detection techniques and approaches. Computer Communication, 2002, 25(15): 1356~1365 被引量:1
  • 2Joo D., Hong T., Han I.. The neural network models for IDS based on the asymmetric costs of false negative errors and false positive errors. Expert Systems with Applications, 2003, 25(1): 69~75 被引量:1
  • 3Paxson V.. Bro: A system for detecting network intruders in real-time. Computer Networks, 1999, 31(23,24): 2435~2463 被引量:1
  • 4Ranum M.J., Landfield K., Stolarchuk M., Sienkiewicz M., Lambeth A., Wall E.. Implementing a generalized tool for network monitoring. Information Security Technical Report, 1998, 3(4): 53~64 被引量:1
  • 5Vigna G., Kemmerer R.A.. NetSTAT: A network-based intrusion detection system. Journal of Computer Security, 1999, 7(1): 37~71 被引量:1
  • 6Lee W., Stolfo S.J.. A framework for constructing features and models for intrusion detection systems. ACM Transactions on Information and System Security, 2000, 3(4): 227~261 被引量:1
  • 7Hofmeyr S.A., Forrest S.. Immunity by design: An artificial immune system. In: Proceedings of 1999 GECCO Conference, San Francisco, 1999, 1289~1296 被引量:1
  • 8Tanenbaum A.S.. Computer Networks 3rd ed. Prentice-Hall, 2001, 275~286 被引量:1
  • 9Carpenter G.A.. Distributed learning, recognition, and prediction by ART and ARTMAP neural networks. Neural Network, 1997, 10(8): 1473~1494 被引量:1
  • 10Lubkin J., Cauwenberghs G.. VLSI implementation of fuzzy adaptive resonance and learning vector quantization, 2002, 30(2): 149~157 被引量:1

二级参考文献40

  • 1[1]Crosbie M, Spafford E. Defending a computer system using autonomous agents. In: Proceedings of the 18th National Information Systems Security Conference,Baltiore,MD, 1995. 549~558 被引量:1
  • 2[2]Lee W, Stolfo S J. Data mining approaches for intrusion detection. In: Proceedings of the 7th USENIX Security Symposium, Berkeley, 1998.26~29 被引量:1
  • 3[3]Frank J. Artificial intelligence and intrusion detection: Current and future directions. In: Proceedings of the 17th National Computer Security Conference, Washington, DC, 1994. 23~33 被引量:1
  • 4[4]Sobirey M, Richter B, Konig H. The intrusion detection system AID-architecture and experiences in automated audit analysis. In: Proceedings of IFIP TC6/TC11 International Conference on Communications and Multimedia Security at Essen,Germany, 1996. 278~290 被引量:1
  • 5[5]King R L, Russ S H, Lambert A B et al. An artificial immune system model for intelligent agents. Future Generation Computer Systems, 2001,17:335~343 被引量:1
  • 6[6]Dasgupta D, Forrest S. Artificial immune systems in industrial applications. In: Proceedings of the 2nd International Conference on Intelligent Processing and Manufacturing of Materials (IPMM), Honolulu, 1999. http://www. cs. unm. edu/~forrest/publications/dasgupta. pdf 被引量:1
  • 7[7]Oprea M, Forrest S. How the immune system generates diversity: Pathogen space coverage with random and evolved antibody libraries. In: Proceedings of 1999 Genetic and Evolutionary Computation Conference, Orlando, FL, 1999. 1651~1656 被引量:1
  • 8[8]Forrest S et al. Computer immunology. Communications of the ACM, 1997, 40(10):88~96 被引量:1
  • 9[9]Hofmeyr S A, Forrest S. Immunity by design: An artificial immune system. In: Proceedings of 1999 GECCO Conference, San Francisco, 1999. 1289~1296 被引量:1
  • 10[10]Percus J K, Percus O E, Perelson A S. Predicting the size of the antibody-combining region from consideration of efficient self/nonself discrimination. In: Proceedings of the National Academy of Science 90, Washington,DC, 1993. 1691~1695 被引量:1

共引文献497

同被引文献67

引证文献8

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部