期刊文献+

一种基于相对距离竞争激活的网络入侵检测算法 被引量:2

A Network Intrusion Detection Algorithm Based on Relative Distance Competitive Activation
下载PDF
导出
摘要 本文针对目前网络入侵检测学习算法效率不高的问题,首先提出相对距离的概念,然后构造基于相对距离的竞争激活函数和相似性度量,在此基础上提出一种改进的网络入侵检测算法。该算法的优势在于:(1)相对距离能较好地区分极差较大的列属性值并实现归一化;(2)基于相对距离的竞争激活函数可以处理包含符号属性的数据,不需转换为数值,且计算复杂度较低;(3)算法不需要重置机制。通过对KDDCUP99数据集的实验,验证了在检测精度与其他算法相当的情况下,改进算法学习时间和检测时间显著减少。 Aiming at the problem of lower efficiency of network intrusion detection learning algo- rithms at present, a concept called relative distance is proposed in this paper, and then competitive acti- vation and similarity measurement are constructed based on it. On that basis we put forward an im proved network intrusion detection algorithm. The advantage of the improved algorithm is: (1) The relative distance can distinguish the terms of column with a large range very well and realize normalization in a lower complexity; (2) Competitive activation of relative distance can process the data which includes the characteristics in a lower computation complexity without converting characters into integers; (3) The algorithm needs no reset. Examination results on the KDD Cup99 sets show that the improved algorithm can reduce the learning time and the testing time significantly while maintaining the accuracy of detection compared to other approaches.
出处 《计算机工程与科学》 CSCD 北大核心 2011年第9期13-18,共6页 Computer Engineering & Science
基金 国家自然科学基金资助项目(61063046)
关键词 入侵检测 竞争激活 相对距离 相似性度量 intrusion detection competitive activation relive distance similarity measurement
  • 相关文献

参考文献17

  • 1Hansen L K, Salamon P.Neural Network Ensembles[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(10):993-1001. 被引量:1
  • 2Cooper L N.Hybrid Neural Network Architectures: Equilibrium Systems that Pay Attention[M] ∥Mammone R J, Zeevi Y Y eds.Neural Networks:Theory and Applications.San Diego, CA: Academic Press, 1991:81-96. 被引量:1
  • 3Auda G, Kamel M.CMNN: Cooperative Moduar Neural Networks[C] ∥Proc of Int’l Conf on Neural Networks, 1997:226-231. 被引量:1
  • 4Grossberg S.Adaptive Pattern Classification and Universal Recoding:1.Paraller Development and Coding of Neural Detectors[J].Biological Cybernetics, 1976(23):121-134. 被引量:1
  • 5马锐,刘玉树,杜彦辉.基于ART2神经网络的入侵检测方法[J].北京理工大学学报,2004,24(8):701-704. 被引量:6
  • 6Carpenter G A, Grossberg S.ART-2:Self-Organization of Stable Category Recognition Codes for Analog Input Pattern[J].Applied Optics, 1987, 26(23):4919-4930. 被引量:1
  • 7Wu Di,Dai Ji,Chi Zhongxian.Intrusion Detection Based on An Improved ART2 Neural Network[C] ∥Proc of the Sixth Int’l Conf on Parallel and Distributed Computing, Applications and Technologies,2005:234-238. 被引量:1
  • 8付兴兵..基于无监督神经网络的入侵检测技术研究[D].西南大学,2007:
  • 9田大新,刘衍珩,魏达.ARTNIDS:基于自适应谐振理论的网络入侵检测系统[J].计算机学报,2005,28(11):1882-1889. 被引量:8
  • 10刘衍珩,田大新,余雪岗,王健.基于分布式学习的大规模网络入侵检测算法[J].软件学报,2008,19(4):993-1003. 被引量:46

二级参考文献27

  • 1田大新,刘衍珩,李永丽,唐怡.数据包过滤规则的快速匹配算法和冲突检测[J].计算机研究与发展,2005,42(7):1128-1135. 被引量:14
  • 2田大新,刘衍珩,魏达.ARTNIDS:基于自适应谐振理论的网络入侵检测系统[J].计算机学报,2005,28(11):1882-1889. 被引量:8
  • 3[1]Kumar S. Classification and detection of computer intrusions [D]. West Lafayetle: School of Liberal Arts Purdue University, 1995. 被引量:1
  • 4[2]Ghosh A K, Schwartzbard A. A study in using neural networks for anomaly and misuse detection[Z]. The 8th USENIX Security Symposium, Washington,1999. 被引量:1
  • 5[4]Snapp S. DIDS (distributed intrusion detection system ) - Motivation, architecture and early prototype [Z]. The 14th National Computer Security Conference, Washington, 1991. 被引量:1
  • 6[5]Cannady J. Artificial neural networks for misuse detection[Z]. The 21st National Information Systems Security Conference, Arlington, 1998. 被引量:1
  • 7[6]Dittrich D. Distributed denial of service (DDoS)attacks/tools [EB/OL ]. http: // staff. washington.edu/dittrich/misc/ddos/, 2003-09-06/2003-09-14. 被引量:1
  • 8[8]Lee W K. A data mining framework for constructing features and models for intrusion detection systems[D]. New York: Graduate School of Arts and Sciences, Columbia University, 1999. 被引量:1
  • 9[9]Carpenter G A, Grossberg S. ART2: Selforganization of stable category recognition codes for analog input patterns[J]. Applied Optics, 1987, 26(23): 4919-4930. 被引量:1
  • 10Theuns V., Ray H.. Intrusion detection techniques and approaches. Computer Communication, 2002, 25(15): 1356~1365 被引量:1

共引文献85

同被引文献17

引证文献2

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部