期刊文献+

神经网络集成的分布式入侵检测方法 被引量:3

Novel Distributed Intrusion Detection Method Based on Neural Network Ensemble
下载PDF
导出
摘要 分布式入侵检测系统需具有分布式检测功能及部件增量更新能力。文中提出了一种基于神经网络集成的分布式入侵检测方法,采用单个Agent检测与多个Agent协同检测的两级集成算法实现分布式入侵检测;在发现新的入侵时,Agent上的神经网络集成采用基于资源分配网的增量学习算法进行更新。实验结果表明,该算法能有效检测各种攻击,并且具有对未知攻击的增量学习能力。 Distributed intrusion detection system requires abilities of distributed detection for intrusions and incremental update for its components. A novel distributed intrusion detection method based on neural network ensemble is proposed. The distributed detection is implemented by a ranked ensemble algorithm. It is firstly detected in single agent with an ensemble of neural networks and then is cooperated with other agents to obtain detected outcome while one agent cannot detect by itself. When discovering a new kind of attack, neural network ensemble is updated by a resource allocating network (RAN) based incremental learning algorithm. Experimental results show that the algorithms are effective in detecting attacks.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2007年第2期231-235,共5页 Journal of Nanjing University of Aeronautics & Astronautics
基金 江苏省自然科学基金(BK2005135)资助项目
关键词 分布式入侵检测 神经网络集成 增量学习 攻击 distributed intrusion detection neural network ensemble incremental learning attack
  • 相关文献

参考文献9

  • 1蒋建春,马恒太,任党恩,卿斯汉.网络安全入侵检测:研究综述[J].软件学报,2000,11(11):1460-1466. 被引量:370
  • 2Bonifacio J M,Cansian A M,Carvalho A C,et al.Neural networks applied in intrusion detection systems[C]//Proceedings of the IEEE World Congress on Computational Intelligence.Oakland,CA:IEEE Computer Society Press,1998:205-210. 被引量:1
  • 3田大新,刘衍珩,魏达.ARTNIDS:基于自适应谐振理论的网络入侵检测系统[J].计算机学报,2005,28(11):1882-1889. 被引量:8
  • 4Lee W,Stolfo S J.A data mining framework for building intrusion detection model[C]//Proceedings of the 1999 IEEE Symposium on Research in Security and Privacy.Oakland,CA:IEEE Computer Society Press,1999:120-132. 被引量:1
  • 5Zhang Yufang,Xiong Zhongyang,Wang Xiuqiong.Distributed intrusion detection based on clustering[C]//Proceedings of the Fourth International Conference on Machine Learning and Cybernetics.Guangzhou:IEEE Press,2005,4:2379-2383. 被引量:1
  • 6周志华,陈世福.神经网络集成[J].计算机学报,2002,25(1):1-8. 被引量:245
  • 7马恒太,蒋建春,陈伟锋,卿斯汉.基于Agent的分布式入侵检测系统模型[J].软件学报,2000,11(10):1312-1319. 被引量:122
  • 8Platt J.A resource-allocating network for function interpolation[J].Neural Computation,1991,3(2):213-225. 被引量:1
  • 9Hettich S,Bay S D.The UCI KDD archive[EB/OL].(2005-09-09)[2006-05-18].Irvine,CA:University of California,Department of Information and Computer Science.http://kdd.ics.uci.edu. 被引量:1

二级参考文献36

  • 11,Bishop M. A model of security monitoring. In: Proceedings of the 5th Annual Computer Security Applications Conference. 1989. 46~52. http://seclab.cs. ucdavis.edu/papers.html 被引量:1
  • 22,Staniford-Chen S, Cheung S, Crawford R et al. GrIDS: a graph based intru sion detection system for large networks. In: Proceedings of the 19th National Information Systems Security Conference, Vol 1. National Institute of Standards a nd Technology, 1996. 361~370 被引量:1
  • 33,Hochberg J, Jackson K, Stallings C et al. NADIR: an automated system for detecting network intrusion and misuse. Computers and Security, 1993,12(3):235~2 48 被引量:1
  • 44,White G B, Fisch E A, Pooch U W. Cooperating security managers: a peer-based intrusion detection system. IEEE Network, 1996,10(1):20~23 被引量:1
  • 55,Forrest S, Hofmeyr S A, Somayaji A. Computer immunology. Communications of th e ACM, 1997,40(10):88~96 被引量:1
  • 66,Hunteman W. Automated information system alarm system. In: Proceedings of the 20th National Information Systems Security Conference. National Institute of Standards and Technology, 1997 被引量:1
  • 77,Porras P A, Neumann P G. EMERALD: event monitoring enabling responses to anom alous live disturbances. In: Proceedings of the 20th National Information System s Security Conference. National Institute of Standards and Technology, 1997 被引量:1
  • 8Liu Meilan,Information and Communication Security CCICS’99.First Chinese Conference Inform,2000年,105页 被引量:1
  • 9刘美兰,信息和通信安全CCICS’99:第1届中国信息和通信安全学术会议论文集,2000年,105页 被引量:1
  • 10Chen S,Internet draftdraft- ietf- cidf- data- formats- 0 0 .txt,1998年 被引量:1

共引文献727

同被引文献10

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部