期刊文献+

基于增量KNN模型的分布式入侵检测架构 被引量:1

Incremental KNN Model Based Distributed Intrusion Detection Architecture
下载PDF
导出
摘要 网络异常检测技术是网络安全领域的热点问题。目前存在的异常检测算法大多属于静态分类算法,并未充分考虑到实际应用领域中海量数据不断增加的问题。本文提出了一种基于增量KNN模型的分布式入侵检测架构,它首先将少量的训练集均匀分配到各个节点上建立初始KNN模型,然后再将新增的数据分割成小块数据交由各个节点并行地进行增量学习,即对各节点的原有模型进行调整、优化,最后通过模型融合得到较为鲁棒的检测效果,在KDDCUP’99数据集上的实验结果验证了本方法的有效性。 Network intrusion detection is a hot topic in network security. Most of intrusion detection algorithms in literature are static classification algorithms, which do not fully consider the problem of data from real - world applications increasing all the time. This paper proposed a distributed architecture for intrusion detection based on incremental KNN model. It divides a small amount of training data into each node on which the initial KNN model are built, and then partitions the new coming data into small parts and passes to different nodes for incremental learning parallelly to adjust and optimize previous generated KNN model. It aims to obtain robust detection performance via integrated learning. Experimental results carried out on KDD CUP'99 data sets justify its effectiveness of the proposed method.
出处 《微计算机应用》 2009年第11期28-33,共6页 Microcomputer Applications
基金 福建省自然科学基金NO.2007J0016 教育部留学回国人员基金(教外司留[2008]890号)的资助
关键词 入侵检测系统 增量学习 并行计算 KNN模型 intrusion detection system, incremental learning parallel computing, KNNModel
  • 相关文献

参考文献22

  • 1卿斯汉著..密码学与计算机网络安全[M].北京:清华大学出版社,2001:266.
  • 2A. K. Ghosh, A. Schwartzbard. A Study in Using Neural Networks for Anomaly and Misuse Detection[ J]. Proceedings of the 8th USENIX Security Symposium, Washington, D.C. US, 1999. 23 - 36. 被引量:1
  • 3S. Mukkamala, G. I. Janoski, A. H. Sung. Intrusion Detection Using Support Vector Machines [ J ]. Proceedings of the High Perfomlance Computing Symposium - HPC 2002, San Diego, April 2002. 178 - 183. 被引量:1
  • 4C. Kruegel, F. Valeur, G. Vigna, et al. Stateful intrusion detection for high -speed networks [J]. In Proc. of the IEEE Syrup. on Security and Privacy. Washington: IEEE Computer Society, 2002. 285 -294. 被引量:1
  • 5C. Giraud -Cartier, R. Vilaha, P. Brazdil. Introduction to the special issue on meta- learning [ J]. Machine Learning, 2004, 54 (3) : 187 -193. 被引量:1
  • 6W. Fan, H. Wang, P. Yu, et al. A framework for scalable cost - sensitive learning based on combing probabilities and benefits [J]. In: Grossman RL, ed, Proc. of the 2nd SIAM Intl Conf. on Data Mining. Philadelphia: SIAM Press, 2002. 437 -453. 被引量:1
  • 7K. Yamanishi. Distributed cooperative Bayesian learning strategies [J]. In: Freund Y, ed, Proc. of the 10th Annual Conf, on Computational Learning Theory. New York: ACM Press, 1997. 250 -262. 被引量:1
  • 8P. K. Chan, S. J. Stolfo. Toward scalable learning with non - uniform class and cost distributions : A case study in credit card fraud detection[J]. In: Rakesh A, ed, Proc. of the 4th Intl Conf, on Knowledge Discovery and Data Mining, Menlo Park: AAAI Press, 1998. 164 - 168. 被引量:1
  • 9P. K. Chan, W. Fan, A. L.Prodromidis, et al. Distributed data mining in credit card fraud detection [ J ]. IEEE Intelligent Systems, 1999, 14(6).67-74. 被引量:1
  • 10B. Sung, B. Jerzy. A decision tree algorithm for distributed data mining : Towards network intrusion detection [ J ]. LNCS 3046, Berlin, Heidelberg: Springer - Verlag, 2004. 206 - 212. 被引量:1

二级参考文献2

共引文献45

同被引文献10

  • 1陆声链,林士敏.基于距离的孤立点检测研究[J].计算机工程与应用,2004,40(33):73-75. 被引量:44
  • 2岳峰,邱保志.基于反向K近邻的孤立点检测算法[J].计算机工程与应用,2007,43(7):182-184. 被引量:8
  • 3Han Jiawei.Micheline kamber.数据挖掘概念与技术[M].范明,孟小峰,译.机械工业出版社,2011:295. 被引量:1
  • 4Wu M, Jermaine C. Outlier detection by sampling with accuracy guaran- tees[ C]//Proceedings of the 12th ACM SIGkDD International Confer- ence on knowledge Discovery and Data Mining. Philadelphia. ACM, 2006:767 - 772. 被引量:1
  • 5CH ERN OFF H. A measure of asymptotic efficiency for tests of a hy- pothesis based on the sum of observations [ J ]. The Annals of Mathe- matical Statistics, 1952,23 (4) :493 - 507. 被引量:1
  • 6Gu Ha S, Rastogi R, Shim K. CURE:an efficient clustering algorithm for large databases[ C ]//Proceedings of the 1998 ACN SIGMOD Inter- national Conference on Management of Data Montreal : ACM, 1998:73 - 84. 被引量:1
  • 7Saha B N, Ray N, Zhang Hong. Snake validation: a PCA-based outlierdetection method[ J]. IEEE Signal Processing Letters, 2009, 16 (6) : 549- 552. 被引量:1
  • 8Korn F, Muthukrishna S. Influence sets based on reverse nearest neigh- bors queries[ C]//Proeeedings of ACM SIGMOD ,2000 :201 -212. 被引量:1
  • 9Xia Chenyi,Hsu W,Lee M L,et al. BODER: efficient computation of bounda .ry points[ J]. IEEE Transaction on knowledge and Data Engi- neering, 2006 ( 18 ). 被引量:1
  • 10刘胜宗,樊晓平,廖志芳.适用于关联属性的样本自适应参数孤立点检测法[J].计算机应用研究,2012,29(9):3259-3262. 被引量:3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部