期刊文献+

High Carbon Alloy Steels with Multiple Types of Ultra-fine Carbides and Their Characteristics 被引量:9

High Carbon Alloy Steels with Multiple Types of Ultra-fine Carbides and Their Characteristics
下载PDF
导出
摘要 Under normal forging and annealing conditions, there are different ultra fine carbides (M3C, M23C6, M7Cj, M6C and MC) in high carbon alloy steels when alloy composition design is carried out properly. On the basis of carbides transformation orderliness, the alloy composition design of the high carbon alloy steels is conducted by phase-equilibrium thermodynamic calculation for Fe-Cr-W-Mo-V-C system. The nucleation and growth of new carbides, dissolution of previous partial carbides in these steels during annealing process, all these lead to ultra-fine distribution of carbides. Due to different crystal structures of carbides and different thermodynamics as well dynamics parameters of the carbides dissolution and precipitation, the range of quenching temperature of these steels is widened, and the good temper-resistance is obtained. The characteristics of heat treatment process and microstructure variance, and the carbides transformation for different temperature are explained by the phase-equilibrium component satisfactorily. Their bend and yield strength, flexibility and toughness all are advanced markedly comparing with that of kindred steels. Results of the applications have proved that the microstructure of ultra-fine carbides in these steels played importance roles in the enhancement of edginess and fatigue crack resistance of the die and knives. Under normal forging and annealing conditions, there are different ultra fine carbides (M3C, M23C6, M7Cj, M6C and MC) in high carbon alloy steels when alloy composition design is carried out properly. On the basis of carbides transformation orderliness, the alloy composition design of the high carbon alloy steels is conducted by phase-equilibrium thermodynamic calculation for Fe-Cr-W-Mo-V-C system. The nucleation and growth of new carbides, dissolution of previous partial carbides in these steels during annealing process, all these lead to ultra-fine distribution of carbides. Due to different crystal structures of carbides and different thermodynamics as well dynamics parameters of the carbides dissolution and precipitation, the range of quenching temperature of these steels is widened, and the good temper-resistance is obtained. The characteristics of heat treatment process and microstructure variance, and the carbides transformation for different temperature are explained by the phase-equilibrium component satisfactorily. Their bend and yield strength, flexibility and toughness all are advanced markedly comparing with that of kindred steels. Results of the applications have proved that the microstructure of ultra-fine carbides in these steels played importance roles in the enhancement of edginess and fatigue crack resistance of the die and knives.
出处 《材料热处理学报》 EI CAS CSCD 北大核心 2004年第5期117-121,共5页 Transactions of Materials and Heat Treatment
关键词 超细硬质合金 高碳钢 结构设计 成分设计 ultra-fine carbides, high carbon steels, alloy composition design, transformation, structure and properties
  • 相关文献

参考文献6

二级参考文献12

共引文献24

同被引文献25

引证文献9

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部