摘要
构造了正四面体生成的一般Sierpinski块,通过构造其覆盖序列,得到了一般Sierpinski块的Hausdorff测度的上界,即ss1a22, Hs(V)≤61+34-2a+1657a2-121-a39a2 (0.32≤a≤0.5).
A general Sierpinski block generated by normal tetrahedron is constructed, and by constructing the covering sequence of the general Sierpinski block, upper bound of Hausdorff measure of the general Sierpinski block is obtained: Hs(V)≤6157a21-a3s糐B(1a2-12+34-2a+169a2〗s2(0.32≤a≤0.5).
出处
《陕西师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2002年第S1期5-11,共7页
Journal of Shaanxi Normal University:Natural Science Edition