A new pressurized feed system of the dual-thrust hybrid rocket motor for flight is presented in this paper.The feed system supplies 90% hydrogen peroxide (90%H 2 O 2) with two different flows of 4.5 and 2 kg s 1.The o...A new pressurized feed system of the dual-thrust hybrid rocket motor for flight is presented in this paper.The feed system supplies 90% hydrogen peroxide (90%H 2 O 2) with two different flows of 4.5 and 2 kg s 1.The oxidizer flow is changed through regulating the mass flow of the high-pressure gas and switching the performance modes of the unique oxidizer flow control valve simultaneously.The models of the gas storage container,pressure regulator valve,control orifice,propellant tank,oxidizer flow control valve and cavitating venturi are generated and used to compute the instantaneous pressure,temperature and mass flow rate.There is a good agreement between the simulated and experimental results.Parameter sensitivity analysis is also conducted.It is found that the throat diameter of the cavitating venturi in feed line 1 is the main factor affecting the mass flow in both boost and sustaining phase.Other parameters have limited effects on the mass flow rate and the transition time of the system.展开更多
For a typical pressurized system with a novel dual-stage gas pressure reducing regulator,a system model is established with modular models of various typical components. The simulation study on the whole working perio...For a typical pressurized system with a novel dual-stage gas pressure reducing regulator,a system model is established with modular models of various typical components. The simulation study on the whole working period shows that the general trends and magnitudes of simulation curves are in agreement with experimental measured curves. As the key component in the pressurized system, the regulator is studied by a series of numerical simulations to reveal the influences of various structure parameters on its stability. Furthermore, the variable ranges which can guarantee the stability of regulator and system are obtained to provide guidance for design. The modeling and analysis approach can be applied to other systems and components.展开更多
文摘A new pressurized feed system of the dual-thrust hybrid rocket motor for flight is presented in this paper.The feed system supplies 90% hydrogen peroxide (90%H 2 O 2) with two different flows of 4.5 and 2 kg s 1.The oxidizer flow is changed through regulating the mass flow of the high-pressure gas and switching the performance modes of the unique oxidizer flow control valve simultaneously.The models of the gas storage container,pressure regulator valve,control orifice,propellant tank,oxidizer flow control valve and cavitating venturi are generated and used to compute the instantaneous pressure,temperature and mass flow rate.There is a good agreement between the simulated and experimental results.Parameter sensitivity analysis is also conducted.It is found that the throat diameter of the cavitating venturi in feed line 1 is the main factor affecting the mass flow in both boost and sustaining phase.Other parameters have limited effects on the mass flow rate and the transition time of the system.
基金financially supported by the National Natural Science Foundation of China (No.11101023)the China Scholarship Council (No.201203070237)
文摘For a typical pressurized system with a novel dual-stage gas pressure reducing regulator,a system model is established with modular models of various typical components. The simulation study on the whole working period shows that the general trends and magnitudes of simulation curves are in agreement with experimental measured curves. As the key component in the pressurized system, the regulator is studied by a series of numerical simulations to reveal the influences of various structure parameters on its stability. Furthermore, the variable ranges which can guarantee the stability of regulator and system are obtained to provide guidance for design. The modeling and analysis approach can be applied to other systems and components.