从用户?项目评分矩阵中学习用户对项目的个性化偏好,对于评分推荐来说至关重要。许多推荐方法如潜在因子模型,无法充分利用评分矩阵中的交互信息学到较好的个性化偏好而得到较差推荐效果。受深度学习中Wide and Deep模型应用于APP推荐启...从用户?项目评分矩阵中学习用户对项目的个性化偏好,对于评分推荐来说至关重要。许多推荐方法如潜在因子模型,无法充分利用评分矩阵中的交互信息学到较好的个性化偏好而得到较差推荐效果。受深度学习中Wide and Deep模型应用于APP推荐启发,本文提出一种深度混合模型并命名为DeepHM用于评分推荐。与Wide and Deep模型相比,使用DeepWide和DNN部分重构Wide模型和Deep模型得到DeepHM,并且DeepWide和DNN部分共享交互信息输入。因此,DeepHM可以更有效地使用评分矩阵中的用户和项目的交互信息学到个性化偏好信息。DeepHM将评分推荐作为分类问题旨在提高推荐准确性。实验表明在公开的Movielens数据集上DeepHM算法相比现有的基于评分推荐模型具有更好的效果。展开更多
Collaborative Filtering(CF) is a leading approach to build recommender systems which has gained considerable development and popularity. A predominant approach to CF is rating prediction recommender algorithm, aiming ...Collaborative Filtering(CF) is a leading approach to build recommender systems which has gained considerable development and popularity. A predominant approach to CF is rating prediction recommender algorithm, aiming to predict a user's rating for those items which were not rated yet by the user. However, with the increasing number of items and users, thedata is sparse.It is difficult to detectlatent closely relation among the items or users for predicting the user behaviors. In this paper,we enhance the rating prediction approach leading to substantial improvement of prediction accuracy by categorizing according to the genres of movies. Then the probabilities that users are interested in the genres are computed to integrate the prediction of each genre cluster. A novel probabilistic approach based on the sentiment analysis of the user reviews is also proposed to give intuitional explanations of why an item is recommended.To test the novel recommendation approach, a new corpus of user reviews on movies obtained from the Internet Movies Database(IMDB) has been generated. Experimental results show that the proposed framework is effective and achieves a better prediction performance.展开更多
文摘从用户?项目评分矩阵中学习用户对项目的个性化偏好,对于评分推荐来说至关重要。许多推荐方法如潜在因子模型,无法充分利用评分矩阵中的交互信息学到较好的个性化偏好而得到较差推荐效果。受深度学习中Wide and Deep模型应用于APP推荐启发,本文提出一种深度混合模型并命名为DeepHM用于评分推荐。与Wide and Deep模型相比,使用DeepWide和DNN部分重构Wide模型和Deep模型得到DeepHM,并且DeepWide和DNN部分共享交互信息输入。因此,DeepHM可以更有效地使用评分矩阵中的用户和项目的交互信息学到个性化偏好信息。DeepHM将评分推荐作为分类问题旨在提高推荐准确性。实验表明在公开的Movielens数据集上DeepHM算法相比现有的基于评分推荐模型具有更好的效果。
基金supported in part by National Science Foundation of China under Grants No.61303105 and 61402304the Humanity&Social Science general project of Ministry of Education under Grants No.14YJAZH046+2 种基金the Beijing Natural Science Foundation under Grants No.4154065the Beijing Educational Committee Science and Technology Development Planned under Grants No.KM201410028017Academic Degree Graduate Courses group projects
文摘Collaborative Filtering(CF) is a leading approach to build recommender systems which has gained considerable development and popularity. A predominant approach to CF is rating prediction recommender algorithm, aiming to predict a user's rating for those items which were not rated yet by the user. However, with the increasing number of items and users, thedata is sparse.It is difficult to detectlatent closely relation among the items or users for predicting the user behaviors. In this paper,we enhance the rating prediction approach leading to substantial improvement of prediction accuracy by categorizing according to the genres of movies. Then the probabilities that users are interested in the genres are computed to integrate the prediction of each genre cluster. A novel probabilistic approach based on the sentiment analysis of the user reviews is also proposed to give intuitional explanations of why an item is recommended.To test the novel recommendation approach, a new corpus of user reviews on movies obtained from the Internet Movies Database(IMDB) has been generated. Experimental results show that the proposed framework is effective and achieves a better prediction performance.