期刊文献+

基于异构网络表示学习的评分预测模型 被引量:2

Rating prediction model based on heterogeneous network representation learning
下载PDF
导出
摘要 深入分析电商行业的用户个性化数据并提供推荐服务近年来已成为业界的热点。推荐服务的基础是对用户的潜在兴趣进行挖掘,并对商品的感兴趣程度进行预测。因此,以此为背景,研究用户对商品的评分预测。对电商业的关系型数据在推荐系统中的应用进行了研究,提出了通过使用网络表示学习进行评分预测的方法。首先,将关系型数据构建成异构网络,用户和商品为网络中的节点。然后,设计了兼顾网络结构信息和节点之间相似性的个性化异构网络采样方法,并对节点进行表示学习。最后,将学习到的用户、商品表示向量输入到神经网络中进行训练,利用优化后的神经网络模型进行评分预测。实验结果表明:所提方法在YELP 13、Movielens 100k、Movielens 1m数据集上都有较高的准确率,对比常用方法,准确率提升6.5%以上。 In recent years,it has become a hot spot to deeply analyze the personalized data of e-commerce users and provide recommendation services.The basis of recommendation service is to mine the potential interest of users and predict user’s interest of products.Therefore,this paper takes this as the background to study the user’s rating prediction of products.This paper studies the application of relational data of e-commerce in recommendation system,and puts forward a method of rating prediction by using network representation learning.First,the relational data is constructed into a heterogeneous network,and the users and items are the nodes in the network.Then,a personalized heterogeneous network sampling method is designed,which takes into account the network structure information and the similarity between nodes,and the nodes are represented and learned.Finally,the learned user and items representation vectors are input into the neural network for training,and the optimized neural network model is used to predict the score.The experimental results show that this method has high accuracy on YELP 13,Movielens 100k and Movielens 1m datasets.Compared with common methods,the accuracy is improved by more than 6.5%.
作者 詹娜娜 刘伟 陈新波 蒲菊华 ZHAN Nana;LIU Wei;CHEN Xinbo;PU Juhua(Research Institute of Beihang University in Shenzhen,Shenzhen 518057,China;School of Computer Science and Engineering,Beihang University,Beijing 100083,China;School of Economics and Management,Beihang University,Beijing 100083,China;China North Vehicle Research Institute,Beijing 100072,China)
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2021年第5期1077-1084,共8页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家重点研发计划(2017YFB1002000) 深圳市基础研究项目(JCYJ20180307123659504)。
关键词 评分预测 推荐系统 表示学习 随机游走 神经网络 rating prediction recommendation system representation learning random walk neural network
  • 相关文献

参考文献5

二级参考文献54

  • 1陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 2LINDEN G,SMITH B,YORK J.Amazon.corn recommendations:Item-to-item collaborative filtering[J].IEEE Internet Computing.2003,7(1):76-80. 被引量:1
  • 3ALI K,WIJNAND V S.TiVo:Making show recommendations using a distributed collaborative filtering architecture[C]//KDD'04:Proceedings of the 10th ACM SIGKDD Intemational Conference on Knowledge Discovery and Data Mining.New York:ACM,2004:394-401. 被引量:1
  • 4GOLDBERG K Y,ROEDER T,GUPTA D,et al.Eigentaste:A constant time collaborative filtering algorithm[J].Information Retrival,2001,4(2):133-151. 被引量:1
  • 5SALAKHUTDINOV R,MNIH A,HINTON G.Restricted Boltzmann machines for collaborative filtering[C]//Proceedings of the 24th International Conference on Machine Learning.New York:ACM,2007:791-798. 被引量:1
  • 6MARLIN B.Collaborative filtering:a machine learning perspective[D].Toronto:University of Toronto,2004. 被引量:1
  • 7SU X,KHOSHGOFTAAR T M.A survey of collaborative filtering techniques[J]. Advances in Artificial Intelligenee,2009,2009(4):421-445. 被引量:1
  • 8KOREN Y.Factorization meets the neighborhood:a multifaeeted collaborative filtering model[C]// Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2008:426-434. 被引量:1
  • 9HOFMANN T.Latent semantic models for collaborative filtering[J].ACM Transactions on Information Systems,2004,22(1):89-115. 被引量:1
  • 10BLEI D,NGA,JORDANM.Latent diriehlet allocation[J].Journal of Machine Learning Research,2003,3:993-1022. 被引量:1

共引文献90

同被引文献32

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部