期刊文献+

评分偏差对于推荐质量的影响 被引量:3

Effect of rating residual on recommendation quality
下载PDF
导出
摘要 从理论上分析了评分偏差对于推荐质量的影响;基于潜在偏好及已知评分对评分偏差进行度量,其中潜在偏好通过心理测量学模型计算得出;通过设定不同的评分偏差水平,对评分偏差的影响进行了实验验证.理论分析及实验验证表明:评分偏差可导致推荐准确度及覆盖度下降;基于高质量的评分数据,协同过滤算法可为用户作出好的推荐. The effect of the rating residual on recommendation quality was analyzed. The rating residual was measured through user ratings and latent preferences. Latent preferences were computed with psychometric models. With different levels of rating residual, the effect of the rating residual was experimentally evaluated on real world datasets. Theoretical analysis and experimental results show that rating residual has negative effects on recommendation accuracy and coverage. Based on high quality of data, collaborative filtering algo- rithms can make precise recommendations for users.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2012年第6期823-828,共6页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金资助项目(61170189 60973105) 软件开发环境国家重点实验室自主研究课题资助项目(SKLSDE-2011ZX-03)
关键词 人工智能 信号过滤与预测 信息检索 评分偏差 数据质量 协同过滤 推荐准确度 覆盖度 artificial intelligence signal filtering and prediction information retrieval rating residual data quality collaborative filtering recommendation accuracy coverage
  • 相关文献

参考文献15

  • 1Gediminas A,Alexander T. Toward the next generation of recom-mender systems:a survey of the state-of-the-art and possible ex- tensions[ J]. IEEE Trans on Knowledge and Data Engineering ( TKDE ) ,2005,17 ( 6 ) :734 - 749. 被引量:1
  • 2Badrul S,George K,Joseph K,et al. Item-based collaborative fil- tering recommendation algorithms [ C ]//Proc of 10th Internation- al World Wide Web Conference (WWW'01). New York: ACM Press ,2001:285 - 295. 被引量:1
  • 3O'Mahony M P,Hurley N J,Si|vestre G C M. Detecting noise in recommender system databases[ C]//Proc of the 10th Interna- tional Conference on Intelligent User Interfaces ( IUI '06 ). New York : ACM Press ,2006 : 109 - 115. 被引量:1
  • 4Cao Huanhuan, Chen Enhong, Yang Jie, et al. Enhancing recom- mender systems under volatile user interest drifts [ C ]//Proc of the 18th ACM Conference on Information and Knowledse Man- agement ( C1KM'09 ). New York : ACM Press, 2009 : 1257 - 1266. 被引量:1
  • 5Xavier A, Neal L, Pujol J M, et al. The wisdom of the few : a col- laborative filtering approach based on expert opinions from the web[ C-//Proc of the 32nd International ACM SIGIR Confer- ence on Research and Development in Information Retrieval ( SIGIR'09 ). New York : ACM Press ,2009 : 552 - 539. 被引量:1
  • 6Herlocker J L, Konstan J A, Terveen L G, et al. Evaluating col- laborative filtering recommender systems [ J ]. Transactions on In- formation Systems (TOIS) , 2004,22 ( 1 ) : 5 - 53. 被引量:1
  • 7Wang Jun, de Vries A P, Reinders M J T. Unifying user-based and item-based collaborative filtering approaches by similarity fu- sion [ C ]//Proc of the 29th International ACM SIGIR Conference on Research and Development in Information Retrieval ( SIGIR'06 ). New York : ACM Press, 2006 : 501 - 508. 被引量:1
  • 8杜文久著..高等项目反应理论[M].重庆:西南师范大学出版社,2007:318.
  • 9Cheng Yunghsiang. Exploring passenger anxiety associated with train travel [ J ]. Transportation, 2010,37 ( 6 ) : 875 - 896. 被引量:1
  • 10David Andrich. A rating formulation for ordered response cate- gories [ J ]. Psychometrikia, 1978,43 (4) :561 - 573. 被引量:1

同被引文献29

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部