期刊文献+

基于因子分解机和隐马尔可夫的推荐算法 被引量:2

A Recommendation Algorithm Based on Factorization Machines and Hidden Markov
下载PDF
导出
摘要 因子分解机是一种基于矩阵分解的机器学习方法,通过在矩阵中引入上下文信息,构建含有上下文信息的矩阵,能够很好地进行用户评分预测。隐马尔可夫模型是一种含有隐含未知参数的统计模型,使用隐藏状态能够更好地符合实际情况。传统的推荐算法在进行推荐时通常并没有引入上下文信息,这通常会影响推荐算法的效果。鉴于上下文感知推荐算法通常能有效提高推荐精度,文中通过对推荐系统引入上下文信息并为用户添加用户隐藏兴趣状态,能够更精确地对用户进行推荐。为此,提出了一种结合因子分解机和隐马尔可夫模型的方法。在公开数据集上的验证结果表明,该方法相较于一些传统的推荐算法能够有效地提升推荐精度,并且在数据量增加的情况下也有较高的推荐精度。 Factorization machine is a machine learning method based on matrix decomposition. By introducing context information into the matrix and constructing the matrix containing context information,it can predict the user rating well. Hidden Markov model is a statistical model with hidden parameters implied,using a hidden state can better meet the actual situation. Traditional recommendation algorithms usually do not introduce context information when making recommendations,which usually affects the effect of recommendation. In view of the fact that the context-aware recommender algorithm can effectively improve the precision,the users can be recommended more accurately by introducing context information into the recommendation system and adding users' hidden interest state. Therefore,we present a method of binding factorization machines and hidden Markov models. The verification results on the public data set show that the proposed method can effectively improve the recommendation accuracy compared with some traditional recommendation algorithms,and it also has higher recommendation accuracy when the amount of data increases.
作者 王晓耘 李贤 袁媛 WANG Xiao-yun;LI Xian;YUAN Yuan(School of Management,Hangzhou Dianzi University,Hangzhou 310018,China;School of Computer Science and Technology,Hangzhou Dianzi University,Hangzhou 310018,China)
出处 《计算机技术与发展》 2019年第6期85-89,共5页 Computer Technology and Development
基金 浙江省高校人文社科研究项目(GK140203204004/02)
关键词 上下文感知 因子分解机 隐马尔可夫模型 隐藏状态 context-aware factorization machines hidden Markov model hidden state
  • 相关文献

参考文献5

二级参考文献45

  • 1张锋,常会友.基于分布式数据的隐私保持协同过滤推荐研究[J].计算机学报,2006,29(8):1487-1495. 被引量:17
  • 2李蕊,李仁发.上下文感知计算及系统框架综述[J].计算机研究与发展,2007,44(2):269-276. 被引量:52
  • 3陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 4Adomavicius G and Tuzhilin A. Towards the next generation of recommender systems: a survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749. 被引量:1
  • 5Adomavicius G, Sankaranarayanan R, Sen S, et al.. Incorporating contextual information in recommender systems using a multidimensional approach[J]. A CM Transactions on Information Systems, 2005, 23(1): 103-145. 被引量:1
  • 6Adomavicius G and Tuzhilin A. Context-aware Recommender Systems (Book Chapter)[M]. Recommender Systems Hand-book, New York, Dordrecht, Heidelberg, London, Springer Press, 2011: 217-253. 被引量:1
  • 7Zhang Yu-jie and Wang Li-cai. Some challenges for contextaware recommender systems[C]. In the 1st Workshop on Recommender System at The 5th IEEE International Conference on Computer Science & Education, Hefei, China, 2010: 362-365. 被引量:1
  • 8Wang Li-cai. Understanding and using contextual information in recommender systems[C]. In Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information, Beijing, China, 2011: 1329-1330. 被引量:1
  • 9Ricci F. Mobile recommender systems[J]. Journal of Information Technology and Tourism, 2011, 12(3): 205-231. 被引量:1
  • 10Chen Annie. Context-aware collaborative filtering system: predicting the user's preference in the ubiquitous computing environment[C]. The 1st International Workshop on Location-and Context-Awareness, Berlin, Heidelberg, Springer 2005, LNCS 3479: 244-253. 被引量:1

共引文献150

同被引文献21

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部