期刊文献+

基于隐式评分的推荐系统研究 被引量:8

Research on recommendation system based on implicit rating
下载PDF
导出
摘要 为解决协同过滤推荐中"稀疏"和"冷开始"问题,提高推荐精度,提出了基于隐式评分的推荐系统。首先建立项档案,采用BP神经网络模型分析用户的导航模式和行为模式,对已点击项进行预测评分,建立用户主观评价模型和用户偏好档案;然后预测用户对未点击项评分,形成比较稠密的用户预测评分矩阵,采用协同过滤推荐技术,产生有效推荐;最后提出基于项特征的谈判模型和谈判策略,支持对推荐结果的解释和客商之间的讨价还价。 Recommendation system based on implicit rating was proposed to improve the precision and solve the problems of "scarcity" and "cold-start". Firstly, this research set up the items' profiles, and adopted the BP neural network to analyze the guiding model and behavior model of the users, gave the forecast rating for the hit items and set up subjective evaluation model and the profiles of preference for the users. Then it forecasted the rating of the non-hit items and formedthe intense rating matrix of user foreast item. After that, it produced the effective recommendation through the adoption of collaborative filtering recommendation algorithm. Finally, the model of negotiation and strategy based on item's characteristics were brought out for recommendation result, which can explain the result and support the bargaining of both sides.
出处 《计算机应用》 CSCD 北大核心 2009年第6期1585-1589,共5页 journal of Computer Applications
基金 湖北省教育厅项目(D200819022008d095)
关键词 协同过滤 隐式评分 推荐系统 策略 collaborative filtering implicit rating recommendation system strategy
  • 相关文献

参考文献10

  • 1KWAK M, CHO D S. Collaborative filtering with automatic rating for recommendation[ C]//Proceedings of ISIE 2001. New York: Industrial Electronics, 2001 : 625 - 628. 被引量:1
  • 2YANO E, SUEYOSHI E, SHINOHARA I, et al. Development of a recommendation system with multiple subjective evaluation process models[ C]// Proceedings of the 2003 International Conference on CyberWorlds. Washington, DC: IEEEComputer Society, 2003:344 -351. 被引量:1
  • 3YU XIAO-GAO, JIAN YIN. A new clustering algorithm based on KNN and DENCLUE[ C]//Proceedings of ICMLC. Washington, DC: IEEE Press, 2005:2033 -2038. 被引量:1
  • 4邓爱林..电子商务推荐系统关键技术研究[D].复旦大学,2003:
  • 5NICHOLS D M. Implicit rating and filtering [ EB/OL]. [2008 -10 - 10 ]. http://www. ercim. org/publication/ws-proceedings/DE- LOS5/nichols. pdf. 被引量:1
  • 6SRINIVASA N, MEDASANI S. Active fuzzy clustering for collaborative filtering[ C] // Proceedings of 2004 IEEE International Conference on Fuzzy Systems. Washington, DC: IEEE Press, 2004:1697 - 1702. 被引量:1
  • 7LEE W P. Towards Agent-based decision making in the electronic marketplace: Interactive recommendation and automated negotiation [J]. Expert Systems with Applications, 2004, 27(4): 665-679. 被引量:1
  • 8YU XIAO - GAO , YU XIAO - PENG. A new k - nearest neighbor searching algorithm based on angular similarity[ C]//Proceedings of the 7th International Conference on Machine Learning and Cybernetics. Washington, DC: IEEE Press, 2008: 1779- 1784. 被引量:1
  • 9杨子晨,孟波,熊德林,肖延松.谈判支持系统研究综述[J].系统工程理论方法应用,2002,11(2):101-106. 被引量:7
  • 10邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147

二级参考文献19

  • 1孟波,付微武汉水利电力大学.基于Web的谈判支持系统[J].管理科学,1999,15(3):35-38. 被引量:10
  • 2Schafer J B, Konstan J A and Riedl J. Recommender systems in E-Commerce[C]. In: ACM Conference on Electronic Commerce(EC99), 1999, 158-166. 被引量:1
  • 3Breese J, Hecherman D and Kadie C. Empirical analysis of predictive algorithms for collaborative filtering[C]. In:Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence(UAI-98), 1998, 43-52. 被引量:1
  • 4Schafer J B, Konstan J A and Riedl J. E-Commerce recommendation applications [J]. Data Mining and Knowledge Discovery,2001, 5 (1-2): 115-153. 被引量:1
  • 5Goldberg D, Nichols D, Oki B M and Terry D. Using collaborative filtering to weave an information tapestry[J]. Communications of the ACM, 1992,35(12):61-70. 被引量:1
  • 6Resnick P, Iacovou N, Suchak M, Bergstrom P and Riedl J.Grouplens. an open architecture for collaborative filtering of netnews[C]. In: Proceedings of ACM CSCW' 94 Conference on Computer-Supported Cooperative Work, 1994,175-186. 被引量:1
  • 7Shardanand U and Maes P. Social information filtering: algorithms for automating ''Word of Mouth'' [C]. In Proceedings of ACM CHI' 95 Conference on Human Factors in Computing Systems, 1995, 210-217. 被引量:1
  • 8Hill W, Stead L, Rosenstein M and Furnas G. Recommending and evaluating choices in a virtual community of Use[C]. In:Proceedings of CHI' 95, 1995,194-201. 被引量:1
  • 9Sarwar B, Karypis G, Konstan J and Riedl J. Item-based collaborative filtering recommendation algorithms[C]. In:Proceedings of the Tenth International World Wide Web Conference, 2001,285-295. 被引量:1
  • 10Chickering D and Hecherman D. Efficient approximations for the marginal likelihood of bayesian networks with hidden variables[J]. Machine Learning, 1997, 29, 181-212. 被引量:1

共引文献152

同被引文献51

引证文献8

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部