采用微波等离子体化学气相沉积(microwave plasma chemical vapor deposition,MPCVD)技术系统地研究了GaN的分解机制。结果表明微波等离子体富氢环境促进了GaN的分解反应,分解过程由表面缺陷开始,向侧面扩展,最后沿氮极性面进行;氢等离...采用微波等离子体化学气相沉积(microwave plasma chemical vapor deposition,MPCVD)技术系统地研究了GaN的分解机制。结果表明微波等离子体富氢环境促进了GaN的分解反应,分解过程由表面缺陷开始,向侧面扩展,最后沿氮极性面进行;氢等离子体中通入少量氮气能够显著抑制GaN的分解,在此基础上采用两步生长法成功实现在GaN上纳米金刚石膜的直接沉积。展开更多
The mixture of Nano-graphite and organic vehicles doped to Nano-diamond paste. The suitable paste proportion was found. Nano-diamond film (NDF) was prepared by sol-gel coating method on ITO glass at 3000/min. The fiel...The mixture of Nano-graphite and organic vehicles doped to Nano-diamond paste. The suitable paste proportion was found. Nano-diamond film (NDF) was prepared by sol-gel coating method on ITO glass at 3000/min. The field emission characteristics of luminance-current, luminance-voltage and luminance-power of Nano-diamond film were analyzed and tested. Comparing these tested curves, the luminance was well proportional to current was got. Theoretic, the inner resistance of NDF field emission display (FED) consumes electric energy and real voltage change between the cathode and the anode of NDF-FED was very small after electrons emit. So the characteristic of NDF-FED was preferable to describe by luminance-current linear relationship, which was advantageous to device tested and designed.展开更多
The low-cost and large area screen-printed nano-diamond film (NDF) for electronic emission was fabricated. The edges and corners of nanocrystalline diamond are natural field-emitters. The nano-diamond paste for screen...The low-cost and large area screen-printed nano-diamond film (NDF) for electronic emission was fabricated. The edges and corners of nanocrystalline diamond are natural field-emitters. The nano-diamond paste for screen-printing was fabricated of mixing nano-graphite and other inorganic or organic vehicles. Through enough disperse in isopropyl alcohol by ultrasonic nano-diamond paste was screen-printed on the substrates to form NDF. SEM images showed that the surface morphology of NDF was improved, and the nano-diamond emitters were exposed from NDF through the special thermal-sintering technique and post-treatment process. The field emission characteristics of NDF were measured under -6 all conditions with 10 Pa pressure. The results indicated that the field emission stability and emission uniformity of NDF were improved through hydrogen plasma post-treatment process. The turn-on field decreased from 1.60 V/ μm to 1.25 V/ μm . The screen-printed NDF can be applied to the displays electronic emission cathode for low-cost outdoor in large area.展开更多
Nano-crystalline diamond (NCD) films were prepared on poly-crystalline diamond (PCD) thick flims by the microwave plasma enhanced chemical vapor deposition (MPCVD) method. Free standing PCD thick film (50 mm in...Nano-crystalline diamond (NCD) films were prepared on poly-crystalline diamond (PCD) thick flims by the microwave plasma enhanced chemical vapor deposition (MPCVD) method. Free standing PCD thick film (50 mm in diameter) with a thickness of 413 μm was deposited in CHn/H2 plasma. It was then abraded for 2 hours and finally cut into pieces in a size of 10×10 mm^2 by pulse laser. NCD fihns were deposited on the thick film substrates by introducing a micro-crystalline diamond (MCD) interlayer. Results showed that a higher carbon concentration (5%) and a lower substrate temperature (650℃) were feasible to obtain a highly smooth interlayer, and the appropriate addition of oxygen (2%) into the gas mixture was conducive to obtaining a smooth nano-crystalline diamond film with a tiny grain size.展开更多
文摘采用微波等离子体化学气相沉积(microwave plasma chemical vapor deposition,MPCVD)技术系统地研究了GaN的分解机制。结果表明微波等离子体富氢环境促进了GaN的分解反应,分解过程由表面缺陷开始,向侧面扩展,最后沿氮极性面进行;氢等离子体中通入少量氮气能够显著抑制GaN的分解,在此基础上采用两步生长法成功实现在GaN上纳米金刚石膜的直接沉积。
基金National Natural Science Foundation of China(51402013,51272024)China Postdoctoral Science Foundation(2014M550022)Fundamental Research Funds for the Central Universities(FRF-TP-15-052A2)~~
文摘The mixture of Nano-graphite and organic vehicles doped to Nano-diamond paste. The suitable paste proportion was found. Nano-diamond film (NDF) was prepared by sol-gel coating method on ITO glass at 3000/min. The field emission characteristics of luminance-current, luminance-voltage and luminance-power of Nano-diamond film were analyzed and tested. Comparing these tested curves, the luminance was well proportional to current was got. Theoretic, the inner resistance of NDF field emission display (FED) consumes electric energy and real voltage change between the cathode and the anode of NDF-FED was very small after electrons emit. So the characteristic of NDF-FED was preferable to describe by luminance-current linear relationship, which was advantageous to device tested and designed.
基金supported by the National Scientific Fund of China (no.90923040 and no.60844006)National 973 program of China(no.2009CB724202)Ningxia higher education Scientific Fund (no.2008JY002)
文摘The low-cost and large area screen-printed nano-diamond film (NDF) for electronic emission was fabricated. The edges and corners of nanocrystalline diamond are natural field-emitters. The nano-diamond paste for screen-printing was fabricated of mixing nano-graphite and other inorganic or organic vehicles. Through enough disperse in isopropyl alcohol by ultrasonic nano-diamond paste was screen-printed on the substrates to form NDF. SEM images showed that the surface morphology of NDF was improved, and the nano-diamond emitters were exposed from NDF through the special thermal-sintering technique and post-treatment process. The field emission characteristics of NDF were measured under -6 all conditions with 10 Pa pressure. The results indicated that the field emission stability and emission uniformity of NDF were improved through hydrogen plasma post-treatment process. The turn-on field decreased from 1.60 V/ μm to 1.25 V/ μm . The screen-printed NDF can be applied to the displays electronic emission cathode for low-cost outdoor in large area.
基金supported by the Research Pund of Hubei Provincial Department of Education of China (No.Q20081505)
文摘Nano-crystalline diamond (NCD) films were prepared on poly-crystalline diamond (PCD) thick flims by the microwave plasma enhanced chemical vapor deposition (MPCVD) method. Free standing PCD thick film (50 mm in diameter) with a thickness of 413 μm was deposited in CHn/H2 plasma. It was then abraded for 2 hours and finally cut into pieces in a size of 10×10 mm^2 by pulse laser. NCD fihns were deposited on the thick film substrates by introducing a micro-crystalline diamond (MCD) interlayer. Results showed that a higher carbon concentration (5%) and a lower substrate temperature (650℃) were feasible to obtain a highly smooth interlayer, and the appropriate addition of oxygen (2%) into the gas mixture was conducive to obtaining a smooth nano-crystalline diamond film with a tiny grain size.
基金the National Natural Science Foundation of China (60577040)Shanghai Foundation of Applied Materials Research and Development (0404)+1 种基金Nano-technology project of Shanghai (0452nm051,0552nm046)Shanghai Leading Academic Disciplines (T0101) .