期刊文献+
共找到1,217篇文章
< 1 2 61 >
每页显示 20 50 100
支持向量机多类分类算法新研究 被引量:36
1
作者 余辉 赵晖 《计算机工程与应用》 CSCD 北大核心 2008年第7期185-189,212,共6页
支持向量机最初是针对两类分类问题提出的,如何将其推广至多类分类问题是当前SVM研究中的热点问题之一。主要针对支持向量机多类分类方法中的分解重构法进行了深入分析,详细讨论了影响分类器性能的两个关键因素:分解策略和组合策略,并... 支持向量机最初是针对两类分类问题提出的,如何将其推广至多类分类问题是当前SVM研究中的热点问题之一。主要针对支持向量机多类分类方法中的分解重构法进行了深入分析,详细讨论了影响分类器性能的两个关键因素:分解策略和组合策略,并通过实验验证了该观点。最后,通过实验对比了包括M-ary支持向量机和模糊支持向量机的SVM多类分类方法。 展开更多
关键词 支持向量机 多类分类 分解重构法
下载PDF
基于帝国殖民竞争算法优化支持向量机的电力变压器故障诊断模型 被引量:44
2
作者 张镱议 焦健 +3 位作者 汪可 郑含博 房加珂 周浩 《电力自动化设备》 EI CSCD 北大核心 2018年第1期99-104,共6页
提出了一种基于帝国殖民竞争算法优化支持向量机的变压器故障诊断模型。对支持向量机进行了非线性和多分类变换,构建了k-折平均分类准确率目标函数,建立了帝国殖民竞争算法优化支持向量机的非线性多分类模型,结合交叉验证原理对变压器... 提出了一种基于帝国殖民竞争算法优化支持向量机的变压器故障诊断模型。对支持向量机进行了非线性和多分类变换,构建了k-折平均分类准确率目标函数,建立了帝国殖民竞争算法优化支持向量机的非线性多分类模型,结合交叉验证原理对变压器进行了故障诊断。故障诊断结果表明,所提方法的平均测试准确率优于标准支持向量机和粒子群优化算法优化支持向量机(准确率分别为77.08%、57.97%和61.96%),验证了所提模型的有效性。采用UCI基准数据集对所提模型进行分类测试,结果表明所提模型在解决分类问题上具有较好的泛化性。 展开更多
关键词 电力变压器 故障诊断 帝国殖民竞争算法 支持向量机 准确率 多分类 模型
下载PDF
基于多分类相关向量机的变压器故障诊断新方法 被引量:39
3
作者 尹金良 朱永利 俞国勤 《电力系统保护与控制》 EI CSCD 北大核心 2013年第5期77-82,共6页
变压器故障诊断本质为多分类问题,具有故障样本数据少,故障不确定因素多的特点。现有变压器故障诊断方法中,贝叶斯网络(BN)需要大量样本数据且计算量大,支持向量机(SVM)存在规则化系数确定困难的局限。针对此现状,提出基于多分类相关向... 变压器故障诊断本质为多分类问题,具有故障样本数据少,故障不确定因素多的特点。现有变压器故障诊断方法中,贝叶斯网络(BN)需要大量样本数据且计算量大,支持向量机(SVM)存在规则化系数确定困难的局限。针对此现状,提出基于多分类相关向量机(M-RVM)的变压器故障诊断新方法。该方法以变压器溶解气体含量比值作为M-RVM模型的输入,采用快速type-Ⅱ最大似然(Fast Type-ⅡML)和最大期望估计(EM)的方法进行模型推断,诊断输出为各故障类别的概率,以概率最大的故障类别作为诊断结果。实例分析表明该方法诊断速度较快,能满足工程需要,同基于BN和SVM的变压器故障诊断方法相比,具有较高的诊断正确率。 展开更多
关键词 多分类 相关向量机 贝叶斯网络 支持向量机 变压器故障诊断
下载PDF
基于RB-XGBoost算法的智能电网调度控制系统健康度评价模型 被引量:39
4
作者 谈林涛 李军良 +4 位作者 任昺 何杨 高欣 徐建航 黄晴晴 《电力自动化设备》 EI CSCD 北大核心 2020年第2期189-195,共7页
针对智能电网调度控制系统(D5000系统)健康度评价,基于专家经验的传统评价方法存在主观性较大的问题,机器学习多分类方法是提高评价客观性的一种有效手段,但健康度各等级样本数目间存在的不平衡问题导致分类准确率较低,为此提出一种基... 针对智能电网调度控制系统(D5000系统)健康度评价,基于专家经验的传统评价方法存在主观性较大的问题,机器学习多分类方法是提高评价客观性的一种有效手段,但健康度各等级样本数目间存在的不平衡问题导致分类准确率较低,为此提出一种基于随机平衡和极端梯度提升(RB-XGBoost)算法的D5000系统健康度评价模型。首先,针对系统各评价等级样本数目严重不平衡的问题,提出一种自适应随机平衡(RB)的混合采样方法,分别以等级间样本数目的最大值、最小值作为采样区间的上、下限,生成多个随机数对各等级样本数据进行欠采样或过采样,增加训练数据的多样性并降低其不平衡程度;然后,训练平衡后的样本数据,建立极端梯度提升(XGBoost)算法子模型,考虑到各子模型重要度的一致性,提出采用硬投票方式集成所有子模型,得到与D5000系统各子模块对应的评价模型;最后,根据该系统指标层级关系,在评价过程中采用并、串行结合的计算方式,构建包含17个RB-XGBoost模型的D5000系统整体健康度评价模型。8组KEEL数据库中多类不平衡数据集的实验结果表明,与现有同类典型方法相比,所提方法的平均分类准确率最高提升了6.79%,平均提升了2.03%;某网省级D5000系统的实时采集数据验证了所提方法的有效性。 展开更多
关键词 智能电网 D5000系统 健康度评价 多分类 自适应随机平衡采样 XGBoost算法
下载PDF
一种基于混淆矩阵的多分类任务准确率评估新方法 被引量:36
5
作者 张开放 苏华友 窦勇 《计算机工程与科学》 CSCD 北大核心 2021年第11期1910-1919,共10页
多分类任务准确率评估对评判模型的分类效果具有重要的理论意义和应用价值。针对机器学习领域的多分类任务,在现有方法的基础上,通过拓展和迁移应用,给出一种新的评估方法。为了准确评估多分类任务模型的分类效果,将遥感图像分类效果评... 多分类任务准确率评估对评判模型的分类效果具有重要的理论意义和应用价值。针对机器学习领域的多分类任务,在现有方法的基础上,通过拓展和迁移应用,给出一种新的评估方法。为了准确评估多分类任务模型的分类效果,将遥感图像分类效果评估方法引入多分类任务。针对多分类任务的实际特点,对该方法进行了改进与推广,以更好地评估分类器效能。基于MNIST手写字符集识别任务和CIFAR-10数据集分类任务的实验结果表明,同样是基于混淆矩阵进行计算,与现有的评估方法相比,该方法可以同时给出分类器整体的分类效果和单个类别的分类效果,对于改进训练过程有一定的指导意义。另一方面,该方法可以推广到任意的分类任务分类效果评估工作中,具有较好的应用前景。 展开更多
关键词 多分类 准确率评估 混淆矩阵
下载PDF
最小二乘支持向量机多分类法的变压器故障诊断 被引量:22
6
作者 贾嵘 徐其惠 +2 位作者 李辉 刘伟 杨可 《高电压技术》 EI CAS CSCD 北大核心 2007年第6期110-113,132,共5页
为了提高变压器故障诊断正判率,提出了一种基于小样本的最小二乘支持向量机(LS-SVM)多分类电力变压器油中气体分析(DGA)法,即通过相关统计分析和数据的预处理,选择变压油中典型气体作为LS-SVM的输入,然后利用典型故障气体的体积分数在... 为了提高变压器故障诊断正判率,提出了一种基于小样本的最小二乘支持向量机(LS-SVM)多分类电力变压器油中气体分析(DGA)法,即通过相关统计分析和数据的预处理,选择变压油中典型气体作为LS-SVM的输入,然后利用典型故障气体的体积分数在高维空间的分布特性诊断变压器故障类型。该法在小样本条件下可获得最优解,泛化能力很好,且没有传统支持向量机只能分两类的缺陷,很好地解决了变压器多种故障共存的实际情况。试验表明,该方法分类效果很好,可较好地解决变压器放电和过热共存时故障的难分辨问题,故障类型的正判率较高。 展开更多
关键词 变压器 油中溶解气体分析 故障诊断 最小二乘支持向量机 多分类 纠错编码
下载PDF
基于加权支持向量数据描述的遥感图像病害松树识别 被引量:28
7
作者 胡根生 张学敏 +1 位作者 梁栋 黄林生 《农业机械学报》 EI CAS CSCD 北大核心 2013年第5期258-263,287,共7页
利用安装在无人机平台上的双光谱相机所获取的可见光和近红外遥感图像,采用改进的加权支持向量数据描述多分类算法,实现病害松树识别。首先根据不同内容信息图像的特点,提取双光谱相机所获取的可见光图像和近红外图像各颜色分量作为相... 利用安装在无人机平台上的双光谱相机所获取的可见光和近红外遥感图像,采用改进的加权支持向量数据描述多分类算法,实现病害松树识别。首先根据不同内容信息图像的特点,提取双光谱相机所获取的可见光图像和近红外图像各颜色分量作为相应像素点的颜色特征,再通过提取加窗图像块的灰度共生矩阵得到中心像素点的纹理特征,然后利用权重系数为每类样本分别作加权支持向量数据描述,实现松树状态的多输出分类识别,其中权重系数是通过建立关于训练样本中心距离的权重函数所确定。与传统的人工、航空和卫星遥感识别方法不同,利用无人机平台和双光谱相机获取遥感图像,具有可操作性强、费用低廉等优势。试验结果表明,相比传统的支持向量机和支持向量数据描述算法,改进的加权支持向量数据描述多分类算法更能准确地进行病害松树识别。 展开更多
关键词 松材线虫病害 遥感图像 状态识别 加权支持向量数据描述 多分类
下载PDF
基于潜在语义的多类文本分类模型研究 被引量:18
8
作者 叶浩 王明文 曾雪强 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第S1期1818-1822,共5页
在文本分类中,一个文本往往有多类属性,而目前大多数分类模型均为二元分类模型。因此,提出一种基于潜在语义的多类分类模型。该模型同时考虑文档特征信息和文档的类属信息,在提取文档潜在语义信息的同时把对文档分类贡献大的特征信息保... 在文本分类中,一个文本往往有多类属性,而目前大多数分类模型均为二元分类模型。因此,提出一种基于潜在语义的多类分类模型。该模型同时考虑文档特征信息和文档的类属信息,在提取文档潜在语义信息的同时把对文档分类贡献大的特征信息保留下来。其结果是既能较好地解决文档中同义词和多义词的问题,又能解决多类属分类问题,并且能够探测到新类。在R eu ters文档集上的实验表明,在维数较低的情况下,分类效果比较好,性能比较稳定。 展开更多
关键词 多类分类 潜在语义 潜在语义分类 偏最小二乘
原文传递
基于本征时间尺度分解和变量预测模型模式识别的机械故障诊断 被引量:25
9
作者 罗颂荣 程军圣 杨宇 《振动与冲击》 EI CSCD 北大核心 2013年第13期43-48,共6页
基于变量预测模型的模式识别(variable predictive model based class discriminate,VPMCD)方法是一种充分利用特征值之间相互内在关系进行多分类模式识别的新方法。对VPMCD算法进行了研究,并采用交叉验证法来选择VPMCD模型。针对机械... 基于变量预测模型的模式识别(variable predictive model based class discriminate,VPMCD)方法是一种充分利用特征值之间相互内在关系进行多分类模式识别的新方法。对VPMCD算法进行了研究,并采用交叉验证法来选择VPMCD模型。针对机械故障振动信号的特征值之间的相互内在关系,结合本征时间尺度分解(intrinsic time-scale decom-position,ITD),提出了一种基于本征时间尺度分解和VPMCD的机械故障诊断方法。该方法首先利用ITD方法将原始信号分解若干个PR(proper rotation,PR)分量,然后提取第一个PR分量的无量纲时域统计参数组成特征向量,最后采用VPMCD方法进行机械故障诊断。通过滚动轴承故障诊断实验验证了该方法能有效地应用于小样本多分类机械故障诊断。 展开更多
关键词 本征时间尺度分解 变量预测模型 多分类 机械故障诊断 机器学习
下载PDF
基于多特征的SVM多分类PCB焊点缺陷检测方法 被引量:22
10
作者 陈寿宏 赵爽 +2 位作者 马峻 张雨璇 郭玲 《激光杂志》 北大核心 2019年第6期21-26,共6页
为了提高印刷电路板(PCB)中元件焊点缺陷检测的分类准确率,提出一种基于多特征的支持向量机(SVM)多分类缺陷检测方法。对采集到的焊点图像进行特征提取,提取焊点的形状和纹理特征参数及方向梯度直方图(HOG)特征。首先对提取到的形状和... 为了提高印刷电路板(PCB)中元件焊点缺陷检测的分类准确率,提出一种基于多特征的支持向量机(SVM)多分类缺陷检测方法。对采集到的焊点图像进行特征提取,提取焊点的形状和纹理特征参数及方向梯度直方图(HOG)特征。首先对提取到的形状和纹理特征,利用SVM中最优的核函数,对焊点多锡、少锡、焊锡合适以及漏焊四种类型进行检测;误检焊点,再利用基于HOG特征的SVM多分类算法对其进行二次检测分类,得到最终分类准确率,提出的算法分类准确率可以达到98.46%以上,具有一定的应用价值。 展开更多
关键词 焊点缺陷检测 特征提取 多特征 支持向量机 多分类
下载PDF
Improved particle swarm optimization algorithm for fuzzy multi-class SVM 被引量:17
11
作者 Ying Li Bendu Bai Yanning Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期509-513,共5页
An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from its... An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from itself and the best one but also from the mean value of some other particles.In addition,adaptive mutation was introduced to reduce the rate of premature convergence.The experimental results on the synthetic aperture radar(SAR) target recognition of moving and stationary target acquisition and recognition(MSTAR) dataset and character recognition of MNIST database show that the improved algorithm is feasible and effective for fuzzy multi-class SVM training. 展开更多
关键词 particle swarm optimization(PSO) fuzzy support vector machine(FSVM) adaptive mutation multi-classification.
下载PDF
简约支持向量机分类算法在下肢动作识别中的应用研究 被引量:16
12
作者 吴剑锋 吴群 孙守迁 《中国机械工程》 EI CAS CSCD 北大核心 2011年第4期433-438,共6页
为提高多模式人体下肢动作识别的准确性,提出了一种基于简约支持向量机算法的下肢动作识别方法。通过动作分解将人体日常下肢动作行为分解为不同的动作片段以组成识别目标集;以下肢肌肉表面肌电信号为信息源,综合短时统计时域特征值和Ma... 为提高多模式人体下肢动作识别的准确性,提出了一种基于简约支持向量机算法的下肢动作识别方法。通过动作分解将人体日常下肢动作行为分解为不同的动作片段以组成识别目标集;以下肢肌肉表面肌电信号为信息源,综合短时统计时域特征值和Mallat小波时频域特征值建立识别特征向量空间;采用核聚类简化的方法降低计算复杂度,提高算法的鲁棒性。起立、平地常速行走以及上下楼梯等四个日常下肢动作识别实验的结果证明了该方法的有效性。 展开更多
关键词 下肢动作识别 表面肌电信号 支持向量机 多元分类
下载PDF
基于小波包变换和支持向量机的故障选线方法 被引量:14
13
作者 高金峰 秦瑜瑞 殷红德 《郑州大学学报(工学版)》 CAS 北大核心 2020年第1期63-69,共7页
电网发生单相接地故障时,故障线路与正常线路的零序电流非工频分量差异明显。针对在高阻接地时以模极大值的极性为判据导致选线成功率不高的问题,给出了一种零序电流非工频分量和支持向量机相结合的选线方法。该方法通过小波包变换分解... 电网发生单相接地故障时,故障线路与正常线路的零序电流非工频分量差异明显。针对在高阻接地时以模极大值的极性为判据导致选线成功率不高的问题,给出了一种零序电流非工频分量和支持向量机相结合的选线方法。该方法通过小波包变换分解各线路零序电流,按能量最大原则选取特征频带,将不同线路在特征频带上的能量与模极大值作为特征向量,以故障线路标号为分类目标,把故障选线转化为多分类问题,使用支持向量机预测故障线路;通过大量仿真得到训练样本,利用K折交叉验证和网格搜索对支持向量机进行参数寻优。测试集上的结果表明,该方法准确、可靠。在不同接地距离、接地电阻、故障初始相角下均能正确选线。 展开更多
关键词 故障选线 小波包变换 多分类 支持向量机
下载PDF
基于SVM的水上交通事故严重程度的影响因素研究 被引量:14
14
作者 汪飞翔 杨亚东 +1 位作者 田书冰 黄立文 《交通信息与安全》 CSCD 北大核心 2018年第2期18-23,32,共7页
为研究水上交通事故中事故严重程度的影响因素,减小水上交通事故发生时的人员伤亡及财产损失,对2015-2016年的水上交通事故统计数据的分析。选取了水上交通事故数据中的船舶类型、事故发生时间、地点、船舶吨位、能见度和风力等级等相... 为研究水上交通事故中事故严重程度的影响因素,减小水上交通事故发生时的人员伤亡及财产损失,对2015-2016年的水上交通事故统计数据的分析。选取了水上交通事故数据中的船舶类型、事故发生时间、地点、船舶吨位、能见度和风力等级等相关因素建立了事故信息库。根据水上交通事故造成的人员伤亡数量和财产损失的大小,将事故严重程度分为3个等级,并建立了基于支持向量机(SVM)的三分类模型。然后通过交叉验证以及网格搜索算法优化SVM分类模型的惩罚参数和核函数参数,得到最优的分类模型。模型建立后,利用SVM-RFE算法求解上述影响因素对事故严重程度的权重值并排序,筛选出对于事故严重程度影响最大的因素。结果表明,支持向量机三分类模型总体分类准确率可达70%以上;同时自沉事故、渔船事故和秋季发生的事故易造成较大的人员伤亡;危化品船舶,内河发生的事故和渔船易造成较大的财产损失。 展开更多
关键词 水上交通安全 水上交通事故 事故严重程度 SVM-RFE 多分类模型
下载PDF
结合自底向上注意力机制和记忆网络的视觉问答模型 被引量:14
15
作者 闫茹玉 刘学亮 《中国图象图形学报》 CSCD 北大核心 2020年第5期993-1006,共14页
目的 现有大多数视觉问答模型均采用自上而下的视觉注意力机制,对图像内容无加权统一处理,无法更好地表征图像信息,且因为缺乏长期记忆模块,无法对信息进行长时间记忆存储,在推理答案过程中会造成有效信息丢失,从而预测出错误答案.为此... 目的 现有大多数视觉问答模型均采用自上而下的视觉注意力机制,对图像内容无加权统一处理,无法更好地表征图像信息,且因为缺乏长期记忆模块,无法对信息进行长时间记忆存储,在推理答案过程中会造成有效信息丢失,从而预测出错误答案.为此,提出一种结合自底向上注意力机制和记忆网络的视觉问答模型,通过增强对图像内容的表示和记忆,提高视觉问答的准确率.方法 预训练一个目标检测模型提取图像中的目标和显著性区域作为图像特征,联合问题表示输入到记忆网络,记忆网络根据问题检索输入图像特征中的有用信息,并结合输入图像信息和问题表示进行多次迭代、更新,以生成最终的信息表示,最后融合记忆网络记忆的最终信息和问题表示,推测出正确答案.结果 在公开的大规模数据集VQA(visual question answering) v2.0上与现有主流算法进行比较实验和消融实验,结果表明,提出的模型在视觉问答任务中的准确率有显著提升,总体准确率为64.0%.与MCB(multimodal compact bilinear)算法相比,总体准确率提升了1.7%;与性能较好的VQA machine算法相比,总体准确率提升了1%,其中回答是/否、计数和其他类型问题的准确率分别提升了1.1%、3.4%和0.6%.整体性能优于其他对比算法,验证了提出算法的有效性.结论 本文提出的结合自底向上注意力机制和记忆网络的视觉问答模型,更符合人类的视觉注意力机制,并且在推理答案的过程中减少了信息丢失,有效提升了视觉问答的准确率. 展开更多
关键词 视觉问答 自底向上 注意力机制 记忆网络 多模态融合 多分类
原文传递
基于支持向量机方法的人脸识别研究 被引量:6
16
作者 刘向东 陈兆乾 《小型微型计算机系统》 CSCD 北大核心 2004年第12期2261-2263,共3页
采用 SVM方法进行人脸识别研究 ,将人脸识别这一典型的多分类问题构造成适合 SVM处理的二分类问题 ,克服了传统 SVM方法在解决多分类问题上的一些缺陷 .实验以手工与自动两种预处理方式在 FERET和 Bio ID人脸库上完成 ,并与 PCA方法进... 采用 SVM方法进行人脸识别研究 ,将人脸识别这一典型的多分类问题构造成适合 SVM处理的二分类问题 ,克服了传统 SVM方法在解决多分类问题上的一些缺陷 .实验以手工与自动两种预处理方式在 FERET和 Bio ID人脸库上完成 ,并与 PCA方法进行了对比 ,结果表明本文的 SVM方法比 PCA方法有更好的概括能力和更高的正确识别率 ,使得今后建立一个基于 展开更多
关键词 支持向量机 多分类 人脸识别
下载PDF
基于无人机数字图像与高光谱数据融合的小麦全蚀病等级的快速分类技术 被引量:13
17
作者 乔红波 师越 +5 位作者 司海平 吴旭 郭伟 时雷 马新明 周益林 《植物保护》 CAS CSCD 北大核心 2015年第6期157-162,共6页
小麦全蚀病是检疫性的土传病害,对小麦生产危害极大,对其发生的监测是治理的根本。遥感技术可实时、宏观地监测病害发生发展,尤其是将光谱信息与高分辨率数字图像进行融合,可直观、精准地对病害识别和分类。本文基于计算机视觉技术,通... 小麦全蚀病是检疫性的土传病害,对小麦生产危害极大,对其发生的监测是治理的根本。遥感技术可实时、宏观地监测病害发生发展,尤其是将光谱信息与高分辨率数字图像进行融合,可直观、精准地对病害识别和分类。本文基于计算机视觉技术,通过光谱数据与高分辨率数字图像结合的方法,对小麦全蚀病等级进行快速分类。首先,通过ASD非成像光谱仪获取小麦全蚀病的光谱信息,提取全蚀病特征光谱,建立光谱比。其次,利用无人机获取的实时田间数码图像,对其颜色特征进行重量化。最后,利用基于支持向量机的决策树分类对图像视场中的不同全蚀病等级进行分类。结果表明,4个全蚀病等级的分类精度均大于86%(Kappa>0.81),平均运算时间小于30s。通过与实地调查的小麦全蚀病的白穗率等级做比对,验证分类结果的准确性,结果表明该方法基本可以实现对小麦全蚀病等级的实时监测。 展开更多
关键词 小麦全蚀病 计算机视觉技术 快速多分类 颜色模型 支持向量机
下载PDF
基于二叉树和SVM的指纹分类 被引量:4
18
作者 朱晓霞 孙同景 陈桂友 《山东大学学报(工学版)》 CAS 2006年第1期121-124,共4页
为解决支持向量机(Support Vector Machine,SVM)进行指纹多类分类存在困难的问题,在应用二叉树理论的基础上,提出了一种新型的指纹分类方法.该算法首先使用二叉树进行多类决策,将原始分类数据分解成3个二类分类问题,然后利用SVM进行二... 为解决支持向量机(Support Vector Machine,SVM)进行指纹多类分类存在困难的问题,在应用二叉树理论的基础上,提出了一种新型的指纹分类方法.该算法首先使用二叉树进行多类决策,将原始分类数据分解成3个二类分类问题,然后利用SVM进行二类分类,使3个分类超平面得到优化.两者的有机结合,充分发挥了SVM在二类分类问题方面相对于其它方法的优势,从而使算法的推广能力有较大提高,总的分类正确率可达97.9%.实验结果证明,二叉树构造多类框架将指纹多类分类问题分解成3个二类分类器系统,不仅可以有效的提高指纹分类的效率,还充分发挥了SVM分类器解决二类分类问题的优势. 展开更多
关键词 指纹分类 二叉树 支持向量机 多类分类
下载PDF
一种基于累积适应度遗传算法的SVM多分类决策树 被引量:12
19
作者 朱庆生 程柯 《计算机应用研究》 CSCD 北大核心 2016年第1期64-67,74,共5页
针对基于遗传算法(genetic algorithm,GA)的支持向量机(support vector machine,SVM)多分类决策树算法(GA-SVM)中全局优化缺陷的问题,通过重新定义遗传适应度函数(fitness),提出一种累积适应度(cumulative fitness),进而衍生出新算法CFG... 针对基于遗传算法(genetic algorithm,GA)的支持向量机(support vector machine,SVM)多分类决策树算法(GA-SVM)中全局优化缺陷的问题,通过重新定义遗传适应度函数(fitness),提出一种累积适应度(cumulative fitness),进而衍生出新算法CFGA-SVM。该算法从根节点开始逐层构造二叉树,对根节点基因实值编码,通过基因分裂操作产生子代种群,然后利用累积适应度筛选出新的种群,筛选出的种群并不一定是当代局部最优,但一定是所得二叉树中全局最优,从而提高分类精度,最后以此循环直至算法结束。通过在UCI的artificial characters数据集上的实验结果表明,CFGA-SVM较之DT-SVM与GA-SVM算法在全局优化能力、分类精度上有明显提高,进而验证了该算法的可行性与有效性,可在大规模样本的分类应用中推广。 展开更多
关键词 多分类 支持向量机 遗传算法 累积适应度函数 全局优化
下载PDF
ECOC多类分类研究综述 被引量:12
20
作者 雷蕾 王晓丹 +2 位作者 罗玺 周进登 陈琴 《电子学报》 EI CAS CSCD 北大核心 2014年第9期1794-1800,共7页
纠错输出编码能有效地将多类问题转化为二类问题进行求解,已受到国内外从事机器学习的研究者们的重视,并使其成为多类分类领域的研究热点.本文首先分析了ECOC多类分类的原理和框架,指出解决ECOC多类分类问题的关键在于解码策略和编码策... 纠错输出编码能有效地将多类问题转化为二类问题进行求解,已受到国内外从事机器学习的研究者们的重视,并使其成为多类分类领域的研究热点.本文首先分析了ECOC多类分类的原理和框架,指出解决ECOC多类分类问题的关键在于解码策略和编码策略的确定;然后从这两个关键点出发综述了ECOC多类分类的最新进展和应用领域;最后指出了目前存在的问题以及下一步研究方向.论文研究成果将为基于ECOC多类分类方法在实际应用过程中起借鉴和参考作用. 展开更多
关键词 多类分类 纠错输出编码 机器学习
下载PDF
上一页 1 2 61 下一页 到第
使用帮助 返回顶部