期刊文献+

基于无人机数字图像与高光谱数据融合的小麦全蚀病等级的快速分类技术 被引量:13

Fast multi-classification of wheat take-all levels based on the fusion of unmanned aerial vehicle digital images and spectral data
下载PDF
导出
摘要 小麦全蚀病是检疫性的土传病害,对小麦生产危害极大,对其发生的监测是治理的根本。遥感技术可实时、宏观地监测病害发生发展,尤其是将光谱信息与高分辨率数字图像进行融合,可直观、精准地对病害识别和分类。本文基于计算机视觉技术,通过光谱数据与高分辨率数字图像结合的方法,对小麦全蚀病等级进行快速分类。首先,通过ASD非成像光谱仪获取小麦全蚀病的光谱信息,提取全蚀病特征光谱,建立光谱比。其次,利用无人机获取的实时田间数码图像,对其颜色特征进行重量化。最后,利用基于支持向量机的决策树分类对图像视场中的不同全蚀病等级进行分类。结果表明,4个全蚀病等级的分类精度均大于86%(Kappa>0.81),平均运算时间小于30s。通过与实地调查的小麦全蚀病的白穗率等级做比对,验证分类结果的准确性,结果表明该方法基本可以实现对小麦全蚀病等级的实时监测。 Wheat take-all will lead to a disaster in wheat production without timely monitoring and management. Traditional remote sensing approaches in wheat take-all have failed to fast and accurately recognize the multi-level disease conditions due to relatively coarse spatial resolution and the experience-based features selection.This study developed a method to achieve the fast multi-classification of wheat take-all based on the computer vision and the data fusion technology.Firstly,ASD HandHeld sensor was used to extract the spectral feature ratio.Then the color model was established to quantify the UAV aerial photo.Finally,the wheat take-all were classified using the decision tree which based on the support vector machine (SVM).The results showed that an overall accuracy was greater than 86% (Kappa 〉 0.81)for classifying all of take-all levels,and computation rate was less than 30 sec-onds,which is meaningful for automatic real-time monitoring of take-all conditions.
出处 《植物保护》 CAS CSCD 北大核心 2015年第6期157-162,共6页 Plant Protection
基金 国家自然科学基金项目(31301604) 河南省科技攻关项目(122102110045) 植物病虫害生物学国家重点实验室开放课题(SKLOF201302)
关键词 小麦全蚀病 计算机视觉技术 快速多分类 颜色模型 支持向量机 wheat take-all computer vision technology multi-classification color model SVM
  • 相关文献

参考文献23

  • 1Cook R J. Take-all of wheat[J]. Physiological and Molecular Plant Pathology, 2003,62 (2) :73 - 86. 被引量:1
  • 2Clapperton M J,Lee N O,Binet F,et al. Earthworms indirectly re- duce the effects of take-all (Gaeurnannomycesgraminis war. tHtici) on so white spring wheat (Triticum aestivum cv. Fielder) [J]. Soil Biology and Biochenistry, 2001, 33(11).. 1531 - 1538. 被引量:1
  • 3孙海燕,李琦,杜文珍,郭英鹏,张爱香,陈怀谷.不同杀菌剂拌种防治小麦全蚀病研究[J].植物保护,2012,38(3):155-158. 被引量:14
  • 4Graeff S, Link J, Claupein W. Identification of powdery mil dew (Erysiphe graminis sp. tritlci) and take-all(Gaeumanno rnyces graminis sp. tritici) disease in wheat (Triticurn aesti rum L. ) by means of leaf reflectance ts[J], ten tral European Journal of Biology, 2006, 1(2) 275 - 288. 被引量:1
  • 5宋晓宇,王纪华,薛绪掌,刘良云,陈立平,赵春江.利用航空成像光谱数据研究土壤供氮量及变量施肥对冬小麦长势影响[J].农业工程学报,2004,20(4):45-49. 被引量:42
  • 6Otazu X, Gonz61ez-Audicana M, Fors O, et al. Introduction of sensorspectral response into image fusion methods. Application to wavelet-based methods[J]. IEEE Transactions on Geosci- ence and Remote Sensing, 2005, 43(10) .. 2376 - 2385. 被引量:1
  • 7顾清,邓劲松,陆超,石媛媛,王珂,沈掌泉.基于光谱和形状特征的水稻扫描叶片氮素营养诊断[J].农业机械学报,2012,43(8):170-174. 被引量:26
  • 8李霖,佘梦媛,罗恒.ZY-3卫星全色与多光谱影像融合方法比较[J].农业工程学报,2014,30(16):157-165. 被引量:24
  • 9Mirik A, Michels G J, Kassyrazhanova-Mirik S, et al. Using digit-al image analysis and spectral reflectance data to quantify damage by greenbug (Hemiptera: Aphididae) in winter wheat [J]. Computers and Electronics in Agriculture, 2006,51 (1/2) : 86 - 98. 被引量:1
  • 10Jin Xiaoying, Davis C IK An integrated system for automatic road mapping from high-resolution multi-spectral satellite imagery by in- formation fusion[J]. Information Fusion, 2005, 6(4) : 257 - 273. 被引量:1

二级参考文献151

共引文献216

同被引文献222

引证文献13

二级引证文献186

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部