期刊文献+

简约支持向量机分类算法在下肢动作识别中的应用研究 被引量:16

Research on Classification Algorithm of Reduced Support Vector Machine for Low Limb Movement Recognition
下载PDF
导出
摘要 为提高多模式人体下肢动作识别的准确性,提出了一种基于简约支持向量机算法的下肢动作识别方法。通过动作分解将人体日常下肢动作行为分解为不同的动作片段以组成识别目标集;以下肢肌肉表面肌电信号为信息源,综合短时统计时域特征值和Mallat小波时频域特征值建立识别特征向量空间;采用核聚类简化的方法降低计算复杂度,提高算法的鲁棒性。起立、平地常速行走以及上下楼梯等四个日常下肢动作识别实验的结果证明了该方法的有效性。 In order to improve precision of the multi-motion pattern recognition of lower limb movements,a recognition method based on reduced SVM was proposed.The daily movements were decomposed into different segments to form the recognition goals,and the surface electromyography signals of low limb muscles were used as information sources.The eigenvectors were extracted using Mallat wavelet transform and statistical characteristics in time-domain.Then the simplified method of kernel clustering was used to reduce the computational complexity and improve the robustness of algorithm.Four patterns were identified herein,i.e.standing,normal speed walking,up-stairs and down-stairs.The experimental results show the effectiveness of this method.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2011年第4期433-438,共6页 China Mechanical Engineering
基金 国家自然科学基金资助项目(60703041) 广东省教育部产学研结合项目(2009B090600139) 浙江理工大学科研启动基金资助项目(1009831-Y)
关键词 下肢动作识别 表面肌电信号 支持向量机 多元分类 lower-limb movement recognition surface electromyo graphy(EMG) support vector machine(SVM) multi-classification
  • 相关文献

参考文献15

  • 1陈鹰,杨灿军著..人机智能系统理论与方法[M].杭州:浙江大学出版社,2006:183.
  • 2Leuthardt E C, Schalk G, Wolpaw J R, et al. A Brain--computer Interface Using Electrocortico- graphic Signals in Humans[J]. Journal of Neural Engineering, 2004,1 (2) : 63-71. 被引量:1
  • 3Li Yong, Gao Xiaorong, Liu H, et al. Classification of Single--trial Electroencephalogram During Finger Movement[J]. IEEE Transactions on Bio--medical Engineering, 2004,51(6) : 1019-1025. 被引量:1
  • 4Zhou H, Hu H, Harris N D, et al. Applications of Wearable Inertial Sensors in Estimation of Upper I.imb Movements[J]. Journal of Biomedical Signal Processing and Control, 2006,1 ( 1 ) : 22-32. 被引量:1
  • 5Sazonov E S, Bumpus T, Zeigler S, et al. Classification of Plantar Pressure and Heel Acceleration Patterns Using Neural Networks[C]//Proceedings of 2005 IEEE International Joint Conference on Neural Networks. Montreal, Canada, 2005 : 3007-3010. 被引量:1
  • 6Kuzelicki J, Zefran M, Burger H, et al. Synthesis of Standing--up Trajectories Using Dynamic Optimization[J]. Gait & Posture,2005,21(1) :1-11. 被引量:1
  • 7Castellini C, Smagt P. Surface EMG in Advanced Hand Prosthetics[J]. Biological Cybernetics, 2009, 100:35-47. 被引量:1
  • 8Yan Zhiguo,Wang Zhizhong, Xie Hongbo. The Application of Mutual Information--based Feature Selection and Fuzzy LS--SVM Based Classifier in Motion Classification[J]. Computer Methods and Programs in Biomedicine, 2008,90:275-284. 被引量:1
  • 9Lucas M F,Gaufriau A S,Pascual S,et al. Multi-- channel Surface EMG Classification Using Support Vector Machines and Signal--based Wavelet Optimization[J]. Biomedical Signal Processing and Control,2008,3(2) :169-174. 被引量:1
  • 10席旭刚,李仲宁,罗志增.基于相关性分析和支持向量机的手部肌电信号动作识别[J].电子与信息学报,2008,30(10):2315-2319. 被引量:14

二级参考文献25

  • 1贾雪琴,王旭,李景宏,杨丹.基于小波变换和K-L展开的单通道表面肌电信号识别[J].东北大学学报(自然科学版),2006,27(8):859-862. 被引量:7
  • 2VAPNIK V N, The nature of statistical learning theory [M]. 2nd ed. New York: Springer-Verlag, 1999:123 - 167. 被引量:1
  • 3BURGES C J C. A tutorial on support vector machines for pattern recognition [J]. Knowledge Discovery and Data Mining, 1998, 2(2): 121 - 167. 被引量:1
  • 4CASTELLINI C, SMAGT P. Surface SEMG in advanced hand prosthetics [J]. Biological Cybernetics, 2009, 100(1): 35-47. 被引量:1
  • 5LUCAS M F, GAUFRIAU A S, PASCUAL S. Multichannel surface SEMG classification using support vector machines and signal-based wavelet optimization [J]. Biomedical Signal Processing and Control, 2008, 3 ( 2 ) : 169 - 174. 被引量:1
  • 6LANCKRIET G, CRISTIANINI N, GHAOUI L E, et al. Learning the kernel matrix with semidefinite pro- gramming [J]. Journal of Machine Learning Research, 2004, 5(1): 27-72. 被引量:1
  • 7SONNENBURG S, RATSCH G G, SCHAFER C, et al. Large scale multiple kernel learning [J]. Journal of Machine Learning Research, 2006, 7(1) : 1531 - 1565. 被引量:1
  • 8RAKOTOMAMONJY A, BACH F R, GRANDVA- LET S Y. SimpleMKL [J]. Journal of Machine Learn- ing Research, 2008, 9(1): 2491-2521. 被引量:1
  • 9LANCKRIET G, BIE T B, CRISTIANINI N, et al. A statistical framework for genomic data fusion [J]. Bioinformatics, 2004, 20(16) : 2626 - 2635. 被引量:1
  • 10OSKOEI M A, HU H S. Support vector machine- based classification scheme for myoelectric control applied to upper limb [J]. IEEE Transactions on Biomedical Engineering, 2008, 55(8) : 1956 - 1965. 被引量:1

共引文献16

同被引文献193

引证文献16

二级引证文献118

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部