期刊文献+

ECOC多类分类研究综述 被引量:12

An Overview of Multi-Classification Based on Error-Correcting Output Codes
下载PDF
导出
摘要 纠错输出编码能有效地将多类问题转化为二类问题进行求解,已受到国内外从事机器学习的研究者们的重视,并使其成为多类分类领域的研究热点.本文首先分析了ECOC多类分类的原理和框架,指出解决ECOC多类分类问题的关键在于解码策略和编码策略的确定;然后从这两个关键点出发综述了ECOC多类分类的最新进展和应用领域;最后指出了目前存在的问题以及下一步研究方向.论文研究成果将为基于ECOC多类分类方法在实际应用过程中起借鉴和参考作用. Multi-classification has been one of the research hotspot in pattern recognition ,and there are many solutions to it . As a common way to model multi-classification to design a set of binary classifiers and fuse them ,Error-correcting output codes (E-COC) represents a successful framework to deal with this type of problems and is attracting more and more attention of researchers . In this paper ,the framework of ECOC is concluded at first .Then the two keys of multi-classification based on ECOC ,i .e .,the cod-ing strategies and decoding strategies are proposed .The main part focuses on the research of the two keys and the application of E-COC .Finally ,the still existing problems of ECOC are pointed out and the promising research fields are given .The analysis of the paper will provide reference and advice in the practical application of multi-classification based on ECOC .
出处 《电子学报》 EI CAS CSCD 北大核心 2014年第9期1794-1800,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.61273275 No.60975026)
关键词 多类分类 纠错输出编码 机器学习 multi-classification error-correcting output codes machine learning
  • 相关文献

参考文献55

  • 1T G Dietterich, G Bakiri. Solving. Multi-class learning problemsvia error-correcting output codes[J] .Journal of Artificial Intel- ligence Research, 1995,34 ( 2 ) : 263 - 286. 被引量:1
  • 2T G Dietterich,G Bakiri, Error-correcting output codes:A gen- eral method for improving multiclass inductive learning pro- grants[A]. Proceedings of the Ninth National Conference on Artificial Intelligence[C]. Menlo Park, San Francisco: AAAI, 1991.572 - 577. 被引量:1
  • 3T G Dietterich, E Kong. Error correcting output codes corrects bias and variance[A]. Proceedings of the 21th Intemafional Conference on Machine Learning[C]. San Francisco: AAAI, 1995.313 - 321. 被引量:1
  • 4F MasuUi G Valentini. Effectiveness of error correcting output coding methods in ensemble and monolithic learning machines [J]. Pattern Anal Applic, 2003,65(6) :285 - 300. 被引量:1
  • 5李建武,魏海周,宋玉龙.ECOC多分类器实现的最小封闭球模型[J].计算机研究与发展,2011,48(S3):22-30. 被引量:1
  • 6Crammer K, Singer Y.On the leamability and design of output codes for mulficlass problems [A]. Proceedings of the Thir- teenth Annual Conference on Computational Learning Theory [C]. Boston: Kluwer Academic Publishers, 2000. 896 - 909. 被引量:1
  • 7T Windeatt,R Ghaderi. Binary labelling and decision level fu- sion[J] .Information Fusion, 2001,2( 1 ) : 103 - 112. 被引量:1
  • 8E Tapia, P Bulacio, L Angelone. Recursive classification [J]. Pattern Recognition letters, 2010,31 (3) : 210 - 215. 被引量:1
  • 9Paolo Simeon, David M J Tax, Robert P W Duin, Francesco TortoreUa. A fast approach to improve classification perfor- mance of ECOC classification systems [J]. Computer Science Trans Structural, Syntactic, and Statistical Pattern Recognition, 2008,43(3) :459 - 468. 被引量:1
  • 10Robett E. Schapire. Using output codes to boost multi-class learning problems[A]. Machine Learning: Proceedings of the Fourteenth International Conference[C]. Nashville TN: IEEE, 1997.313 - 321. 被引量:1

二级参考文献109

  • 1蒋艳凰,赵强利,杨学军.一种搜索编码法及其在监督分类中的应用[J].软件学报,2005,16(6):1081-1089. 被引量:13
  • 2张静,宋锐,郁文贤,夏胜平,胡卫东.基于混淆矩阵和Fisher准则构造层次化分类器[J].软件学报,2005,16(9):1560-1567. 被引量:27
  • 3李建武,陆耀.一种快速多分类支持向量机实现策略[J].模式识别与人工智能,2007,20(3):301-307. 被引量:3
  • 4VLADIMIR N. The nature of statistical learning theory [ M ]. New York : Springer-Verlag, 2000,157-183. 被引量:1
  • 5OLIVER C, QUEGAN S. Understanding synthetic aperture radar images [ M ] London : Artech House Inc, 1998:296-315. 被引量:1
  • 6SUN Y, LIU Z, TODOROVIC S, et al. Adaptive boosting for SAR automatic target recognition [ J ], IEEE Transaction on Aerospace and Electronic Systems ,2007,43 ( 1 ) : 112-125. 被引量:1
  • 7FREUND Y,SCHAPIRE R. A decision-theoretic generalization of on line learning and an application to boosting [ J ]. Journal of Computer and System Sciences, 1997,55 : 119- 139. 被引量:1
  • 8KUNCHEVA L. Using diversity measures for generating error-correcting output codes in classifier ensembles [ J ]. Pattern Recognition Letters ,2005,26:83-90. 被引量:1
  • 9LING S, XING C. Coding theory [ M ]. Cambridge: Cambridge University Press ,2004:96-99. 被引量:1
  • 10SANDIRASEGARAM N, ENGHSTH R. Comparative analysis of feature extraction (2D FFT and wavelet) and classification (Sp metric distances, MLP NN, and HNeT) algorithms for SAR imagery[J]. Proc SPIE,2005 ,5808 :314-325. 被引量:1

共引文献40

同被引文献95

引证文献12

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部