The micro-hydropower has the technical capability of providing electricity to rural areas in Manica or other isolated place in Mozambique in currently not yet supplied with EDM (Mozambicam electricity Supply Company)....The micro-hydropower has the technical capability of providing electricity to rural areas in Manica or other isolated place in Mozambique in currently not yet supplied with EDM (Mozambicam electricity Supply Company). Associated that, today more than 12 million of Mozambicans live below the poverty line including in non-electrified areas and most of these populations are rural people. The stochastic ARMA model and Neural Wavelet was built and fitted from the historical 49 years of hydrology predictions. The flow duration curve was plotted based on flow data with objective to find power potential that was 76.8 Kw.展开更多
This research focused on integrating GIS into energy alternatives for climate change mitigation by creating a GIS-based hydrologic model that can be used to identify sites that have significant potential for micro hyd...This research focused on integrating GIS into energy alternatives for climate change mitigation by creating a GIS-based hydrologic model that can be used to identify sites that have significant potential for micro hydropower development within the River Perkerra catchment area. Hydropower is a clean and renewable energy source that remains largely untapped in the country and its development can be used to mitigate anthropogenic climate change by reducing reliance on fossil or biomass derived fuels. This research established the extent of this resource and whether the available sites with significant micro hydropower potential within the study area were amply copious to warrant further development. Currently, such identification is done physically using means that are menial, costly and significantly time consuming. A 90-metre resolution Digital Terrain Model (DTM) data obtained from the Shuttle Radar Topography Mission and various GIS tools were used to create a hydrologic framework which was used to identify potential sites along River Perkerra that suited any desired head requirement for the purposes of locating micro hydropower plants. The derived model demonstrated that it was possible to identify sites at discrete geographic locations along any stream drainage network using GIS. In addition, the model also provides a decision support system that integrates a powerful graphical user interface, spatial database management system and a generalized river basin network flow model for the purposes of exploiting and developing micro hydropower. With sufficient data on catchment discharge and use of higher resolution DTM, the model can be further enhanced to accurately obtain the total microhydro potential of River Perkerra by aggregating the respective potentials of every steam segment.展开更多
文摘The micro-hydropower has the technical capability of providing electricity to rural areas in Manica or other isolated place in Mozambique in currently not yet supplied with EDM (Mozambicam electricity Supply Company). Associated that, today more than 12 million of Mozambicans live below the poverty line including in non-electrified areas and most of these populations are rural people. The stochastic ARMA model and Neural Wavelet was built and fitted from the historical 49 years of hydrology predictions. The flow duration curve was plotted based on flow data with objective to find power potential that was 76.8 Kw.
文摘This research focused on integrating GIS into energy alternatives for climate change mitigation by creating a GIS-based hydrologic model that can be used to identify sites that have significant potential for micro hydropower development within the River Perkerra catchment area. Hydropower is a clean and renewable energy source that remains largely untapped in the country and its development can be used to mitigate anthropogenic climate change by reducing reliance on fossil or biomass derived fuels. This research established the extent of this resource and whether the available sites with significant micro hydropower potential within the study area were amply copious to warrant further development. Currently, such identification is done physically using means that are menial, costly and significantly time consuming. A 90-metre resolution Digital Terrain Model (DTM) data obtained from the Shuttle Radar Topography Mission and various GIS tools were used to create a hydrologic framework which was used to identify potential sites along River Perkerra that suited any desired head requirement for the purposes of locating micro hydropower plants. The derived model demonstrated that it was possible to identify sites at discrete geographic locations along any stream drainage network using GIS. In addition, the model also provides a decision support system that integrates a powerful graphical user interface, spatial database management system and a generalized river basin network flow model for the purposes of exploiting and developing micro hydropower. With sufficient data on catchment discharge and use of higher resolution DTM, the model can be further enhanced to accurately obtain the total microhydro potential of River Perkerra by aggregating the respective potentials of every steam segment.