传统的聚类算法一般使用欧氏距离获得数据的相似矩阵,在处理一些较复杂的数据时,欧氏距离由于不能反映全局一致性,因此无法有效地描述出数据点的实际分布。提出了一种基于秩约束密度敏感距离(Rank Constraints Density Sensitive Distan...传统的聚类算法一般使用欧氏距离获得数据的相似矩阵,在处理一些较复杂的数据时,欧氏距离由于不能反映全局一致性,因此无法有效地描述出数据点的实际分布。提出了一种基于秩约束密度敏感距离(Rank Constraints Density Sensitive Distance,RCDSD)的自适应聚类算法。该方法首先引入密度敏感距离的相似性度量得到相似矩阵,有效地扩大了不同类数据点之间的距离,缩小了同类数据点间的距离,从而解决了传统聚类算法使用欧氏距离作为相似性度量导致聚类结果出现偏差的弊端;其次,在相似矩阵的拉普拉斯矩阵上施加秩约束,使相似矩阵的连通区域数等于聚类数,直接将数据点划分到正确的类中,得到最终的聚类结果,而不需要执行k-means或其它离散化程序。在人工仿真数据集和真实数据集上进行了大量实验,结果表明,所提算法得到了准确的聚类结果,并提高了聚类性能。展开更多
The nitrate ester substitution derivatives of prismane were studied at the B3LYP/6-311G** level. The sublimation enthalpies and heats of formation in gas phase and solid state were calculated. The detonation perform...The nitrate ester substitution derivatives of prismane were studied at the B3LYP/6-311G** level. The sublimation enthalpies and heats of formation in gas phase and solid state were calculated. The detonation performances were also predicted by using the famous Kamlet-Jacbos equation. Our calculated results show that introducing nitrate ester group into prismane is helpful to enhance its detonation properties. Stabilities were evaluated through the bond dissociation energies, bond order, characteristic heights(H50) and band gap calculations. The trigger bonds in the pyrolysis process of prismane derivatives were confirmed as O–ON2 bond. The BDEs of all compounds were large, so these prismane derivatives have excellent stability consistent with the results of H50 and band gap.展开更多
文摘传统的聚类算法一般使用欧氏距离获得数据的相似矩阵,在处理一些较复杂的数据时,欧氏距离由于不能反映全局一致性,因此无法有效地描述出数据点的实际分布。提出了一种基于秩约束密度敏感距离(Rank Constraints Density Sensitive Distance,RCDSD)的自适应聚类算法。该方法首先引入密度敏感距离的相似性度量得到相似矩阵,有效地扩大了不同类数据点之间的距离,缩小了同类数据点间的距离,从而解决了传统聚类算法使用欧氏距离作为相似性度量导致聚类结果出现偏差的弊端;其次,在相似矩阵的拉普拉斯矩阵上施加秩约束,使相似矩阵的连通区域数等于聚类数,直接将数据点划分到正确的类中,得到最终的聚类结果,而不需要执行k-means或其它离散化程序。在人工仿真数据集和真实数据集上进行了大量实验,结果表明,所提算法得到了准确的聚类结果,并提高了聚类性能。
基金supported by the Natural Science Foundation of Guizhou Province(QKJ[2014]2140 and QJTD[2012]052)
文摘The nitrate ester substitution derivatives of prismane were studied at the B3LYP/6-311G** level. The sublimation enthalpies and heats of formation in gas phase and solid state were calculated. The detonation performances were also predicted by using the famous Kamlet-Jacbos equation. Our calculated results show that introducing nitrate ester group into prismane is helpful to enhance its detonation properties. Stabilities were evaluated through the bond dissociation energies, bond order, characteristic heights(H50) and band gap calculations. The trigger bonds in the pyrolysis process of prismane derivatives were confirmed as O–ON2 bond. The BDEs of all compounds were large, so these prismane derivatives have excellent stability consistent with the results of H50 and band gap.