Let R be a ring and n,k be two non-negative integers.As an extension of several known notions,we introduce and study(n,k)-weak cotorsion modules using the class of right R-modules with n-weak fat dimensions at most k....Let R be a ring and n,k be two non-negative integers.As an extension of several known notions,we introduce and study(n,k)-weak cotorsion modules using the class of right R-modules with n-weak fat dimensions at most k.Various examples and applications are also given.展开更多
Let R be a commutative domain with 1 and Q(≠R)its field of quotients.In this note an R-module M is called w_(∞)-Warfield cotorsion if M∈WC∩P^(⊥)_(w_(∞)),where WC denotes the class of all Warfield cotorsion R-mod...Let R be a commutative domain with 1 and Q(≠R)its field of quotients.In this note an R-module M is called w_(∞)-Warfield cotorsion if M∈WC∩P^(⊥)_(w_(∞)),where WC denotes the class of all Warfield cotorsion R-modules and P_(w_(∞))the class of all w_(∞)-projective R-modules.It is shown that R is a PVMD if and only if all w-cotorsion R-modules are w_(∞)-Warfield cotorsion,and that R is a Krull domain if and only if every w-Matlis cotorsion strong w-module over R is a w_(∞)-Warfield cotorsion w-module.展开更多
设T=A 0 U B是形式三角矩阵环,其中A,B是环,U是(B,A)-双模.利用Hom函子和伴随同构等理论,刻画形式三角矩阵环T上的F-Gorenstein平坦模结构,并证明若BU的平坦维数有限,U A的平坦维数有限且对任意的余挠左A-模C,有U■AC是余挠左B-模,则左T...设T=A 0 U B是形式三角矩阵环,其中A,B是环,U是(B,A)-双模.利用Hom函子和伴随同构等理论,刻画形式三角矩阵环T上的F-Gorenstein平坦模结构,并证明若BU的平坦维数有限,U A的平坦维数有限且对任意的余挠左A-模C,有U■AC是余挠左B-模,则左T-模M_(1)/M_(2)φ^(M)是F-Gorenstein平坦模当且仅当M_(1)是F-Gorenstein平坦左A-模,Cokerφ^(M)是F-Gorenstein平坦左B-模,且φ^(M):U■AM 1→M_(2)是单射.展开更多
Let R be a ring and let be the class of strongly Gorenstein fiat right R-modules. We call a right R-module M a weak Gorenstein cotorsion module if M is in the class ⊥. Properties of weak Gorenstein cotorsion modu...Let R be a ring and let be the class of strongly Gorenstein fiat right R-modules. We call a right R-module M a weak Gorenstein cotorsion module if M is in the class ⊥. Properties of weak Gorenstein cotorsion modules are investigated. It is shown that weak Gorenstein cotorsion R-modules over coherent rings are indeed weaker than Gorenstein cotorsion R-modules. Weak Gorenstein cotorsion dimension for modules and rings are also studied.展开更多
In this paper, we introduce the concept of almost cotorsion modules. A module is called almost cotorsion if it is subisomorphic to its cotorsion envelope. Some characterizations of almost cotorsion modules are given. ...In this paper, we introduce the concept of almost cotorsion modules. A module is called almost cotorsion if it is subisomorphic to its cotorsion envelope. Some characterizations of almost cotorsion modules are given. It is also proved that every module is a direct summand of an almost cotorsion module. As an application, perfect rings are characterized in terms of almost cotorsion modules.展开更多
Let R be a ring, and let (F, C) be a cotorsion theory. In this article, the notion of F-perfect rings is introduced as a nontrial generalization of perfect rings and A-perfect rings. A ring R is said to be right dr-...Let R be a ring, and let (F, C) be a cotorsion theory. In this article, the notion of F-perfect rings is introduced as a nontrial generalization of perfect rings and A-perfect rings. A ring R is said to be right dr-perfect if F is projective relative to R for any F ∈ F. We give some characterizations of F-perfect rings. For example, we show that a ring R is right F-perfect if and only if F-covers of finitely generated modules are projective. Moreover, we define F-perfect modules and investigate some properties of them.展开更多
The notion of a tilting pair Miyashita in 2001. It is a useful tool in cotorsion pairs related to a fixed tilting (covariantly) finite subcategory and a tilting pair were given in this paper. over artin algebras was...The notion of a tilting pair Miyashita in 2001. It is a useful tool in cotorsion pairs related to a fixed tilting (covariantly) finite subcategory and a tilting pair were given in this paper. over artin algebras was introduced by the tilting theory. Approximations and pair were discussed. A eontravariantly eotorsion pair associated with a fixed展开更多
To investigate cohomology theories based on flats, Asadollahi and Salarian gave the definition of F-Gorenstein flat R-modules, and these modules are exactly Gorenstein fiat provided that R is right coherent. In this p...To investigate cohomology theories based on flats, Asadollahi and Salarian gave the definition of F-Gorenstein flat R-modules, and these modules are exactly Gorenstein fiat provided that R is right coherent. In this paper, we get some properties of F-Gorenstein flat R-modules and establish the stability of F-Gorenstein flat categories.展开更多
In basic homological algebra, the flat and injective dimensions of modules play an important and fundamental role. In this paper, the closely related IFP-flat and IFP-injective dimensions are introduced and studied. W...In basic homological algebra, the flat and injective dimensions of modules play an important and fundamental role. In this paper, the closely related IFP-flat and IFP-injective dimensions are introduced and studied. We show that IFP-fd(M) = IFP-id(M+) and IFP-fd(M+)=IFP-id(M) for any R-module M over any ring R. Let :Z-In (resp., "Zgv,~) he the class of all left (resp., right) R-modules of IFP-injective (resp., IFP-flat) dimension at most n. We prove that every right R-module has an IFn- preenvelope, (IFn,IF⊥n) is a perfect cotorsion theory over any ring R, and for any ring R with IFP-id(RR) 〈 n, (IIn,II⊥n) is a perfect cotorsion theory. This generalizes and improves the earlier work (J. Algebra 242 (2001), 447-459). Finally, some applications are given.展开更多
文摘Let R be a ring and n,k be two non-negative integers.As an extension of several known notions,we introduce and study(n,k)-weak cotorsion modules using the class of right R-modules with n-weak fat dimensions at most k.Various examples and applications are also given.
基金This work was partially supported by the Sichuan Science and Technology Program(2023NSFSC0074)the National Natural Science Foundation of China(11961050,12061001)Aba Teachers University(ASS20230106,20210403005,20220301016).
文摘Let R be a commutative domain with 1 and Q(≠R)its field of quotients.In this note an R-module M is called w_(∞)-Warfield cotorsion if M∈WC∩P^(⊥)_(w_(∞)),where WC denotes the class of all Warfield cotorsion R-modules and P_(w_(∞))the class of all w_(∞)-projective R-modules.It is shown that R is a PVMD if and only if all w-cotorsion R-modules are w_(∞)-Warfield cotorsion,and that R is a Krull domain if and only if every w-Matlis cotorsion strong w-module over R is a w_(∞)-Warfield cotorsion w-module.
基金The authors wish to express their sincere thanks to the referees for their valuable comments and suggestions. The first author was supported by the Postdoctoral Science Foundation of China (2017M611851), the Jiangsu Planned Projects for Postdoctoral Research Funds (1601151C) and the Provincial Natural Science Foundation of Anhui Province of China (KJ2017A040). The second author was supported by the NSFC (11771212), and the first two authors were supported by a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. The third author was supported by the NSFC (11501257, 11671069, 11771212) and the Postdoctoral Science Foundation of China (2016M600426).
文摘Let R be a ring and let be the class of strongly Gorenstein fiat right R-modules. We call a right R-module M a weak Gorenstein cotorsion module if M is in the class ⊥. Properties of weak Gorenstein cotorsion modules are investigated. It is shown that weak Gorenstein cotorsion R-modules over coherent rings are indeed weaker than Gorenstein cotorsion R-modules. Weak Gorenstein cotorsion dimension for modules and rings are also studied.
基金Specialized Research Fund (20050284015, 20030284033) for the Doctoral Program of Higher Education of China the Postdoctoral Research Fund (2005037713) of China Jiangsu Planned Projects for Postdoctoral Research Fund (0203003403) the Research Fund of Nanjing Institute of Technology of China
文摘In this paper, we introduce the concept of almost cotorsion modules. A module is called almost cotorsion if it is subisomorphic to its cotorsion envelope. Some characterizations of almost cotorsion modules are given. It is also proved that every module is a direct summand of an almost cotorsion module. As an application, perfect rings are characterized in terms of almost cotorsion modules.
文摘Let R be a ring, and let (F, C) be a cotorsion theory. In this article, the notion of F-perfect rings is introduced as a nontrial generalization of perfect rings and A-perfect rings. A ring R is said to be right dr-perfect if F is projective relative to R for any F ∈ F. We give some characterizations of F-perfect rings. For example, we show that a ring R is right F-perfect if and only if F-covers of finitely generated modules are projective. Moreover, we define F-perfect modules and investigate some properties of them.
文摘The notion of a tilting pair Miyashita in 2001. It is a useful tool in cotorsion pairs related to a fixed tilting (covariantly) finite subcategory and a tilting pair were given in this paper. over artin algebras was introduced by the tilting theory. Approximations and pair were discussed. A eontravariantly eotorsion pair associated with a fixed
文摘To investigate cohomology theories based on flats, Asadollahi and Salarian gave the definition of F-Gorenstein flat R-modules, and these modules are exactly Gorenstein fiat provided that R is right coherent. In this paper, we get some properties of F-Gorenstein flat R-modules and establish the stability of F-Gorenstein flat categories.
基金supported by National Natural Science Foundation of China(10961021,11001222)
文摘In basic homological algebra, the flat and injective dimensions of modules play an important and fundamental role. In this paper, the closely related IFP-flat and IFP-injective dimensions are introduced and studied. We show that IFP-fd(M) = IFP-id(M+) and IFP-fd(M+)=IFP-id(M) for any R-module M over any ring R. Let :Z-In (resp., "Zgv,~) he the class of all left (resp., right) R-modules of IFP-injective (resp., IFP-flat) dimension at most n. We prove that every right R-module has an IFn- preenvelope, (IFn,IF⊥n) is a perfect cotorsion theory over any ring R, and for any ring R with IFP-id(RR) 〈 n, (IIn,II⊥n) is a perfect cotorsion theory. This generalizes and improves the earlier work (J. Algebra 242 (2001), 447-459). Finally, some applications are given.