期刊文献+

F-perfect Rings and Modules

F-perfect Rings and Modules
下载PDF
导出
摘要 Let R be a ring, and let (F, C) be a cotorsion theory. In this article, the notion of F-perfect rings is introduced as a nontrial generalization of perfect rings and A-perfect rings. A ring R is said to be right dr-perfect if F is projective relative to R for any F ∈ F. We give some characterizations of F-perfect rings. For example, we show that a ring R is right F-perfect if and only if F-covers of finitely generated modules are projective. Moreover, we define F-perfect modules and investigate some properties of them. Let R be a ring, and let (F, C) be a cotorsion theory. In this article, the notion of F-perfect rings is introduced as a nontrial generalization of perfect rings and A-perfect rings. A ring R is said to be right dr-perfect if F is projective relative to R for any F ∈ F. We give some characterizations of F-perfect rings. For example, we show that a ring R is right F-perfect if and only if F-covers of finitely generated modules are projective. Moreover, we define F-perfect modules and investigate some properties of them.
出处 《Communications in Mathematical Research》 CSCD 2013年第1期41-50,共10页 数学研究通讯(英文版)
关键词 F-perfect ring F-cover F-perfect module cotorsion theory projective module F-perfect ring, F-cover, F-perfect module, cotorsion theory, projective module
  • 相关文献

参考文献13

  • 1Eckmann B,Schopf A. (ü)ber injektive moduln[J].Archlv Math,1953.75-78. 被引量:1
  • 2Bass H. Finitistic dimension and a homological generalization of semi-primary rings[J].Transactions of the American Mathematical Society,1960.466-488. 被引量:1
  • 3Amini A,Ershad M,Sharif H. Rings over which flat covers of finitely generated modules are projective[J].Communications in Algebra,2008.2862-2871. 被引量:1
  • 4Enochs E E,Jenda O M G. Relative Homological Algebra[M].Berlin:Walter de Gruyter,2000. 被引量:1
  • 5Trlifaj J. Covers,Envelopes,and Cotorsion Theories:Lecture Notes for the Workshop[A].Cortona,2000. 被引量:1
  • 6Enochs E E,Jenda O M G,Torrecillas B,Xu J. Torsion Theory with Respect to Ext.Research Report 98-11[R].Department of Mathematics,University of Kentucky,1998. 被引量:1
  • 7García Rozas J R. Covers and Envelopes in the Category of Complexes of Modules[M].Boca Raton,FL:Chapman & Hall/CRC,1999. 被引量:1
  • 8Enochs E E,Jenda O M G,Lopez-Ramos J A. The existence of Gorenstein flat covers[J].Mathematica Scandinavica,2004.46-62. 被引量:1
  • 9Rotman J J. An Introduction to Homological Algebra[M].New York:Academic Press,Inc,1979. 被引量:1
  • 10Xu J Z. Flat Covers of Modules[A].New York:springer-verlag,1996. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部