期刊文献+

IFP-FLAT DIMENSIONS AND IFP-INJECTIVE DIMENSIONS 被引量:1

IFP-FLAT DIMENSIONS AND IFP-INJECTIVE DIMENSIONS
下载PDF
导出
摘要 In basic homological algebra, the flat and injective dimensions of modules play an important and fundamental role. In this paper, the closely related IFP-flat and IFP-injective dimensions are introduced and studied. We show that IFP-fd(M) = IFP-id(M+) and IFP-fd(M+)=IFP-id(M) for any R-module M over any ring R. Let :Z-In (resp., "Zgv,~) he the class of all left (resp., right) R-modules of IFP-injective (resp., IFP-flat) dimension at most n. We prove that every right R-module has an IFn- preenvelope, (IFn,IF⊥n) is a perfect cotorsion theory over any ring R, and for any ring R with IFP-id(RR) 〈 n, (IIn,II⊥n) is a perfect cotorsion theory. This generalizes and improves the earlier work (J. Algebra 242 (2001), 447-459). Finally, some applications are given. In basic homological algebra, the flat and injective dimensions of modules play an important and fundamental role. In this paper, the closely related IFP-flat and IFP-injective dimensions are introduced and studied. We show that IFP-fd(M) = IFP-id(M+) and IFP-fd(M+)=IFP-id(M) for any R-module M over any ring R. Let :Z-In (resp., "Zgv,~) he the class of all left (resp., right) R-modules of IFP-injective (resp., IFP-flat) dimension at most n. We prove that every right R-module has an IFn- preenvelope, (IFn,IF⊥n) is a perfect cotorsion theory over any ring R, and for any ring R with IFP-id(RR) 〈 n, (IIn,II⊥n) is a perfect cotorsion theory. This generalizes and improves the earlier work (J. Algebra 242 (2001), 447-459). Finally, some applications are given.
作者 卢博 刘仲奎
出处 《Acta Mathematica Scientia》 SCIE CSCD 2012年第6期2085-2095,共11页 数学物理学报(B辑英文版)
基金 supported by National Natural Science Foundation of China(10961021,11001222)
关键词 IFP-flat dimension IFP-injective dimension Pre (Cover) Pre (Envelope) Cotorsion theory IFP-cotorsion module IFP-flat dimension IFP-injective dimension Pre (Cover) Pre (Envelope) Cotorsion theory IFP-cotorsion module
  • 相关文献

参考文献1

二级参考文献12

  • 1Anderson F W, Fuller K R. Rings and Categories of Modules. New York: Springer-Verlag, 1974. 被引量:1
  • 2Chen J L, Ding N Q. On n-coherent rings. Comm Algebra, 1996, 24(10): 3211-3216. 被引量:1
  • 3Ding N Q. On envelopes with the unique mapping property. Comm Algebra, 1996, 24(4): 1459-1470. 被引量:1
  • 4Enochs E E, Jenda O M G. Relative Homological Algebra. Berlin-New York: Walter de Gruyter, 2000. 被引量:1
  • 5Fuchs L, Salce L. Modules over Valuation Domain. Lecture Notes Pure Appl Math. Vol 97. New York and Basel: Marcel Dekker, Inc., 1985. 被引量:1
  • 6Gobel R, Trlifaj J. Approximations and Endomorphism Algebras of Modules. Berlin-New York: Walter de Gruyter, 2006. 被引量:1
  • 7Lam T Y. Lectures on Modules and Rings. New York-Heidelberg-Berlin: Springer-Verlag: 1999. 被引量:1
  • 8Rotman J J. An Introduction to Homological Algebra. New York: Academic Press, 1979. 被引量:1
  • 9Wisbauer R. Foundations of Module and Ring Theory. Gordon and Breach, 1991. 被引量:1
  • 10Xu J. Flat Covers of Modules. Lecture Notes in Math 1634. Berlin-Heidelberg-New York: Springer-Verlag, 1996. 被引量:1

共引文献2

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部