This paper deals with reaction-diffusion system with nonlocal source. It is proved that there exists a unique classical solution and the solution either exists globally or blows up in finite time. Furthermore, its blo...This paper deals with reaction-diffusion system with nonlocal source. It is proved that there exists a unique classical solution and the solution either exists globally or blows up in finite time. Furthermore, its blow-up set and asymptotic behavior are obtained provided that the solution blows up in finite time.展开更多
This paper deals with an evolution p-Laplace equation with nonlocal source subject to weighted nonlocal Dirichlet boundary conditions. We give sufficient conditions for the existence of global and non-global solutions.
This paper investigates the properties of solutions to a quasilinear parabolic system with nonlocal boundary conditions and localized sources. Conditions for the existence of global or blow-up solutions are given. Glo...This paper investigates the properties of solutions to a quasilinear parabolic system with nonlocal boundary conditions and localized sources. Conditions for the existence of global or blow-up solutions are given. Global blow-up property and blow- up rate estimates are also derived.展开更多
文摘This paper deals with reaction-diffusion system with nonlocal source. It is proved that there exists a unique classical solution and the solution either exists globally or blows up in finite time. Furthermore, its blow-up set and asymptotic behavior are obtained provided that the solution blows up in finite time.
基金The NSF (10771085) of Chinathe 985 Program of Jilin University
文摘This paper deals with an evolution p-Laplace equation with nonlocal source subject to weighted nonlocal Dirichlet boundary conditions. We give sufficient conditions for the existence of global and non-global solutions.
基金The NSF(10771085)of Chinathe Key Lab of Symbolic Computation and Knowledge Engineering of Ministry of Educationthe 985 program of Jilin University and the Graduate Innovation Fund(20111034)of Jilin University
文摘This paper investigates the properties of solutions to a quasilinear parabolic system with nonlocal boundary conditions and localized sources. Conditions for the existence of global or blow-up solutions are given. Global blow-up property and blow- up rate estimates are also derived.