期刊文献+

带非局部源的退化奇异半线性抛物方程组解的整体存在性与爆破 被引量:4

Global Existence and Blow-up for Degenerate and Singular Semilinear Parabolic System with Nonlocal Source
下载PDF
导出
摘要 研究了带齐次Dirichlet边界条件的非局部退化奇异半线性抛物方程组,建立了经典解的局部存在性与唯一性定理,在适当的假设下,得到了非负解的整体存在性与有限时刻爆破. In this paper the authors investigate a nonlocal degenerate singular semilinear parabolic system with homogeneous Dirichlet conditions. The local existence and uniqueness of classical solution are established. Under appropriate hypotheses, the global existence and finite time blow-up of positive solution are obtained.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第1期66-70,共5页 Journal of Sichuan Normal University(Natural Science)
关键词 退化 奇异 抛物方程组 非局部源 整体存在 爆破 Degenerate Singular Parabolic systems Nonlocal source Global existence Finite time blow-up
  • 相关文献

参考文献10

  • 1Chan C Y,Yang J.Complete blow-up for degenerate semilinear parabolic equations[J].J Comput Appl Math,2000,113(2):353-364. 被引量:1
  • 2Chan C Y,Liu H T.Global existence of solutions for degenerate semilinear parabolic problems[J].Nonlinear Anal,1998,34(4):617-628. 被引量:1
  • 3陈友朋,谢春红.带非局部源的退化奇异半线性抛物方程的爆破[J].数学学报(中文版),2004,47(1):41-50. 被引量:11
  • 4Deng W B,Li Y X,Xie C H.Blow-up and global existence for a nonlocal degenerate parabolic systems[J].J Math Anal Appl,2003,277(1):199-217. 被引量:1
  • 5Deng W B.Global existence and finite time blow-up for a degenerate reaction-diffusion system[J].Nonlinear Anal,2005,60(5):977-991. 被引量:1
  • 6Dunford N,Schwartz J T.Linear Operators (Ⅱ):Spectral Theory,Self Adjoint Operators in Hilbert Space[M].New York:Interscience Publishers,1963. 被引量:1
  • 7Floater M S,Mcleod J B.Blow-up at the boundary for degenerate semilinear parabolic equations[J].Arch Rational Mech Anal,1991,114(1):57-77. 被引量:1
  • 8Galaktionov V A,Kurdyumov S P,Samarskii A A.A parabolic system of quasi-linear equation Ⅱ[J].Differential Equation,1985,21(9):1049-1062. 被引量:1
  • 9Li M.Existence and blow-up for degenerate parabolic systems with nonlocal source[J].Acta Appl Math Sinica,2004,17(3):350-354. 被引量:1
  • 10栗付才,陈有朋,谢春红.ASYMPTOTIC BEHAVIOR OF SOLUTION FOR NONLOCAL REACTION-DIFFUSION SYSTEM[J].Acta Mathematica Scientia,2003,23(2):261-273. 被引量:8

二级参考文献22

  • 1Bebernes J., Bressan A., Lacey A., Total blow-up versus single point blow-up, J. Diff. Equations, 1988, 73:30-44. 被引量:1
  • 2Chadam J. M., Peirce A., Yin H. -M, The blow-up property of solutions to some diffusion equation with localized nonlinear reactions, J. Math. Anal. Appl., 1992, 169: 313-328. 被引量:1
  • 3Souplet P., Blow-up in nonlocal reaction-diffusion equations, SIAM J. Math. Anal., 1998, 29(6): 1301-1334. 被引量:1
  • 4Souplet P., Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source, J. Diff. Equations, 1999, 153: 374-406. 被引量:1
  • 5Wang M. -X., Wang Y. -M., Properties of positive solutions for non-local reaction diffusion problems, Math.Methods Appl. Sci., 1996, 19: 1141-1156. 被引量:1
  • 6Pao C. V., Blowing-up of solution for nonlocal reaction-diffusion problem in combustion theory, J. Math.Anal. Appl., 1992, 16(2): 591-600. 被引量:1
  • 7Dunford N., Schwartz J. T., Linear operators, Part Ⅱ: Spectral theory, self adjoint operators in Hilbert space,Interscience Publishers, New York: NY, 1963. 被引量:1
  • 8Chan C. Y., Yang J., Complete blow-up for degenerate semilinear parabolic equations, J. Comput. Appl.Math., 2000, 113: 353-364. 被引量:1
  • 9Chan C. Y., Chen C. S., A numerical method for semilinear singular parabolic quenching problems, Quart.Appl. Math., 1989, 47: 45-57. 被引量:1
  • 10Friedman A., Mcleod B., Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J.,1985, 34: 425-447. 被引量:1

共引文献16

同被引文献22

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部