期刊文献+

一类非局部反应扩散方程组解的爆破性质 被引量:2

Blow-up Profiles to a Nonlocal Reaction-diffusion System
下载PDF
导出
摘要 该文研究一类带非局部源项的反应扩散方程组.作者证明了初值充分大时解在有限时刻爆破,建立了爆破解的爆破速率估计以及边界层估计。 This paper deals with a reaction-diffusion system with nonlocal sources. The authors first show that the solution blows up in finite time T if the initial data is large enough, then establish the estimates of the blow-up rates and the asymptotic behavior of the solution. Finally the size of the boundary layer is given.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2007年第3期420-427,共8页 Acta Mathematica Scientia
基金 国家自然科学基金(10201024) 教育部优秀青年教师基金 电子科技大学青年科技基金(JX0645)资助
关键词 反应扩散方程组 非局部 爆破 爆破速率 边界层 Reaction-diffusion system Nonlocal source Blow-up Blow-up rates Boundary layer
  • 相关文献

参考文献1

二级参考文献7

  • 1Candam J M, Peire A, Yin H M. The blow-up property of the solutions to some diffusion equations with localized nonlinear reactions. J Math Anal Appl, 1992, 169(2): 313-328 被引量:1
  • 2Candam J M, Yin H M. An iteration procedure for a class of integro-differential equations of parabolic type. J Integral equations Appl, 1989, 2(1): 31-47 被引量:1
  • 3Souplet P. Uniform blow-up profile and boundary behavior for diffusion equations with nonlocal nonlinear source. J Differential Equations, 1999, 153(2): 374-406 被引量:1
  • 4Wang M, Wang Y. Properties of positive solutions for non-local reaction-diffusion problems. Math Meth Appl Sci, 1996, 19(1): 1141-1156 被引量:1
  • 5Wang M, Wang S, Xie C H. Critical fujita exponents for nonlocal reaction diffusion systems. J partial Differential Equations, 1999, 12(3): 201-212 被引量:1
  • 6Souplet P. Blow-up in nonlocal reaction-diffusion equations. SIAM J Math Anal, 1998, 29(4): 1301-1334 被引量:1
  • 7Friedman A. Partial differential equation of parabolic type. New Jersey: Prentice-Hill, Inc, 1964 被引量:1

共引文献7

同被引文献23

  • 1刘其林.非局部反应扩散方程的一致爆破速率[J].数学物理学报(A辑),2006,26(3):440-448. 被引量:1
  • 2刘其林,李玉祥,高洪俊.非局部反应扩散方程组的爆破性质[J].数学学报(中文版),2006,49(4):869-882. 被引量:5
  • 3容跃堂,薛应珍.一类非线性抛物型方程组解的整体存在及爆破[J].纺织高校基础科学学报,2006,19(3):245-249. 被引量:9
  • 4Ladyzhenkaya O A. Linear and quasilinear equations of parabolic type[ J ]. Transl Math Monographs, 1968,23 ( 1 ) :90 -95. 被引量:1
  • 5Hilhorst D. The fast reaction limit for a reaction diffusion system[ J]. J Math Anad, 1996,199:349 -373. 被引量:1
  • 6ANDERSON J R.Local existence and uniqueness of solutions of degenerate parabolic equations[J].Comm Partial Differential Equations,1991,16:105-143. 被引量:1
  • 7DENG W B.Global existence and finite time blow up for a degenerate reaction-diffusion system[J].Nonlinear Anal,2005,60:977-991. 被引量:1
  • 8DENG W B,LI Y X,XIE C H.Blow-up and global existence for a nonlocal degenerate parabolic system[J].J Math Anal Appl,2003,277:199-217. 被引量:1
  • 9GALAKTIONOV V A,LEVINE H A.A general approach to critical Fujita exponents in nonlinear parabolic problems[J].Nonlinear Anal,1998,34:1 005-1 027. 被引量:1
  • 10SOUPLET P.Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source[J].Journal of Differential Equations,1999,153:374-406. 被引量:1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部