摘要
研究了具有Dirichlet边界条件的非线性非局部方程ut=Δu+∫Ωup(t,y)dy+kuq(t,x)的正解,对于径向对称且非增的初始数据,证明了当p>q≥1时,解整体爆破,并得到爆破率估计((p-1)︱Ω︱)-1/p-1 ≤u(t,x).(T*-t)1/p-1 ≤((p-1)1/s1 (0))-1/p-1.
In this study,the positive solution of nonlinear nonlocal equation ut=Δu+∫Ωup(t,y)dy+kuq(t,x) with Dirichlet boundary condition is discussed.For radially symmetric and non-increasing initial data,it is shown that the solution blows up everywhere if p q ≥ 1.Moreover,the estimated blow-up rate of u(x,t) is determined in the case.
出处
《南通大学学报(自然科学版)》
CAS
2011年第2期90-94,共5页
Journal of Nantong University(Natural Science Edition)
基金
南通市应用研究计划项目(K2010042)
关键词
非局部源
反应扩散方程
爆破
积分抛物方程
nonlocal source
reaction-diffusion equation
blow-up
integro-parabolic equation