期刊文献+

非局部反应扩散方程的一致爆破行为 被引量:5

Uniform Blow-up Behavior for Nonlocal Reaction-Diffusion Equations
下载PDF
导出
摘要 研究了具有Dirichlet边界条件的非线性非局部方程ut=Δu+∫Ωup(t,y)dy+kuq(t,x)的正解,对于径向对称且非增的初始数据,证明了当p>q≥1时,解整体爆破,并得到爆破率估计((p-1)︱Ω︱)-1/p-1 ≤u(t,x).(T*-t)1/p-1 ≤((p-1)1/s1 (0))-1/p-1. In this study,the positive solution of nonlinear nonlocal equation ut=Δu+∫Ωup(t,y)dy+kuq(t,x) with Dirichlet boundary condition is discussed.For radially symmetric and non-increasing initial data,it is shown that the solution blows up everywhere if p q ≥ 1.Moreover,the estimated blow-up rate of u(x,t) is determined in the case.
作者 陈莉 陈玉娟
机构地区 南通大学理学院
出处 《南通大学学报(自然科学版)》 CAS 2011年第2期90-94,共5页 Journal of Nantong University(Natural Science Edition) 
基金 南通市应用研究计划项目(K2010042)
关键词 非局部源 反应扩散方程 爆破 积分抛物方程 nonlocal source reaction-diffusion equation blow-up integro-parabolic equation
  • 相关文献

参考文献7

  • 1Bebernes J, Bressan A, Lacey A. Total blow-up versus single point blow-up[J]. J Differential Equations, 1988, 73(1):30-44. 被引量:1
  • 2Bricher S. Blow-up behaviour for nonlinearly perturbed semilinear parabolic equations Proc[J]. Roy Soe Edinburgh Sect A, 1994, 124:947-969. 被引量:1
  • 3Souplet P. Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source[J]. J Differential Equations, 1999, 153:374-406. 被引量:1
  • 4Okada A, Fukuda I. Total versus single point blow-up of solutions of a semilinear parabolic equation with localized reaction[J]. Math Anal Appl, 2003, 281(2):485-500. 被引量:1
  • 5Liu Qilin, Chen Yichao, Lu shengqi. Uniform blow-up pro- files for nonlinear and nonlocal reaction-diffusion equa- tions[J]. Nonlinear Analysis, 2009, 71(5/6):1572-1583. 被引量:1
  • 6Soupier P. Blow up in nonlocal reaction-diffusion equations [J]. SIAM J Math Anal, 1998, 29(6) : 1301-1334. 被引量:1
  • 7Wang Mingxin, Wang Yuanming. Properties of postive sdu- tions for non-local reaction-diffution problems [J ]. Math Methods Appl Sci, 1996, 19(14) : 1141-1156. 被引量:1

同被引文献41

  • 1王建新,江莉,张新丽.多分量AKNS方程的新可积分解(英文)[J].应用数学,2009,22(3):457-462. 被引量:2
  • 2陈玉娟.非局部的退化抛物型方程组的解的爆破和整体存在性[J].数学物理学报(A辑),2006,26(5):731-740. 被引量:6
  • 3M. Escobedo and M. A. Herrero, A semilinear parabolic system in a bounded domain, Ann. Mat. Pura Appl.(4)CLXV(1993), 307-315. 被引量:1
  • 4V. A. Galaktionov, S. P. Kurdyumov and A. A. Samarskii, A parabolic system of quasi-linear equations I, Diff.Eqns. 19(1983), 1558-1571. 被引量:1
  • 5V.A. Galaktionov, S. P. Kurdyumov and A. A. Samarskii, A parabolic system of quasi-linear equations II, DifiF.Eqns. 21 (1985), 1049-1062. 被引量:1
  • 6W.B. Deng, Y. X. Li and C. H. Xie, Blow-up and global existence for a nonlocal degenerated, parabolicsystem, J.Math. Anal. Appl., 277 (2003),199-217. 被引量:1
  • 7Y.J. Chen and M. X. Wang, Blow-up problems for partial differential equations and systems of parabolic type,in "Recent Progress in Nonlinear Partial Differential Equations and Viscosity Solutions' Eds. Y. Du, H, Ishii andW. Y. Lin, World Scientific Publishing, 2009. 245-281 ISBN: 981-283-473-7. 被引量:1
  • 8A. S. Kalashnikov, The nature of the propagation of perturbations in problems of non-linear heat conductionwith absorption, USSR Comp. Math. Math. Phys. 14 (1974),70-85. 被引量:1
  • 9Gu Y G Necessary and sufficient conditions of extinction of solution on parabolic equations [J].Acta. Math.Sinica, 1994,37: 73-79 (in Chinese). 被引量:1
  • 10GalaktionovV A, Vazquez J L. Asymptotic behaviour of nonlinear parabolic equations with criticalexponents [J].A dynamical system approach, J. Funct. Anal, 1991,100:435-462. 被引量:1

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部