摘要
研究了一类具有齐次Dirichlet边界条件和带有非局部反应项的退化抛物方程组ut=vp1Δu+a∫Ωum1vq1d(x),vt=up2Δv+b∫Ωvm2uq2d(x)解的性质,通过比较原理和上下解方法得到解整体存在和有限爆破的充分条件,明确了解的整体存在性与初始值的关系,以及解的爆破性和区域大小的直接关系.
The properties of solutions for a degenerate reaction-diffusion system ut=vp1Δu+a∫Ωum1vq1d( x),vt=up2Δv+b∫Ωvm2uq2d( x) with null Dirichlet boundary conditions and nonlocal sources are investigated.The sufficient conditions for the global existence and the finite time blow-up of solution to the system are established by comparison theorem and upperlower solution method.It can clearly understand the global existence,the relationship between the initial value,the blow-up of solution and the direct relation of the area size.
出处
《纺织高校基础科学学报》
CAS
2016年第1期35-38,共4页
Basic Sciences Journal of Textile Universities
基金
内蒙古自治区高等学校青年科技英才支持计划资助项目(NJYT-15-B10)
内蒙古自然科学基金资助项目(2013MS0202)
关键词
非局部源
退化抛物型方程组
整体存在
有限爆破
nonlocal source
degenerate parabolic system
global existence
finite time blow-up