The aggregation-caused quenching(ACQ)rationale has been employed to improve the fluorescence imaging accuracy of nanocarriers by precluding free probe-derived interferences.However,its usefulness is undermined by limi...The aggregation-caused quenching(ACQ)rationale has been employed to improve the fluorescence imaging accuracy of nanocarriers by precluding free probe-derived interferences.However,its usefulness is undermined by limited penetration and low spatiotemporal resolution of NIR-Ⅰ(700-900 nm)bioimaging owing to absorption and diffraction by biological tissues and tissue-derived autofluorescence.This study aimed to develop ACQ-based NIR-Ⅱ(1000-1700 nm)probes to further improve the imaging resolution and accuracy.The strategy employed is to install highly planar and electron-rich julolidine into the 3,5-position of aza-BODIPY based on the larger substituent effects.The newly developed probes displayed remarkable photophysical properties,with intense absorption centered at approximately 850 nm and bright emission in the 950-1300 nm region.Compared with the NIR-Ⅰ counterpart P2,the NIR-Ⅱ probes demonstrated superior water sensitivity and quenching stability.ACQ1 and ACQ6 exhibited more promising ACQ effects with absolute fluorescence quenching at water fractions above 40% and higher quenching stability with less than 2.0% fluorescence reillumination in plasma after 24 h of incubation.Theoretical calculations verified that molecular planarity is more important than hydrophobicity for ACQ properties.Additionally,in vivo and ex vivo reillumination studies revealed less than 2.5% signal interference from prequenched ACQ1,in contrast to 15% for P2.展开更多
Lanthanide(Ln^(3+))-doped near infrared(NIR)-II luminescent nanoprobes have shown great promise in many technological fields,but are currently limited by the low absorption efficiency of Ln^(3+)due to the forbidden 4f...Lanthanide(Ln^(3+))-doped near infrared(NIR)-II luminescent nanoprobes have shown great promise in many technological fields,but are currently limited by the low absorption efficiency of Ln^(3+)due to the forbidden 4f→4f transition.Herein,we report a novel NIR-II luminescent nanoprobe based on efficient energy transfer from Ce^(3+)to Er^(3+)and Nd^(3+)in sub-10 nm SrS nanocrystals(NCs),which are excitable by using a commercial blue light-emitting diode(LED).Through sensitization by the allowed 4f→5d transition of Ce^(3+),the NCs exhibit strong NIR-II luminescence from Er^(3+)and Nd^(3+)with quantum yields of 2.9%and 2.3%,respectively.Furthermore,by utilizing the intense NIR-II luminescence of Er^(3+)from the thermally coupled Stark sublevels of ^(4)I_(13/2),we demonstrate the application of SrS:Ce^(3+)/Er^(3+)NCs as blue-LED-excitable NIR-II luminescent nanoprobes for ratiometric thermal sensing.These findings reveal the unique advantages of SrS:Ln^(3+)NCs in NIR-II luminescence,which may open up a new avenue for exploring novel and versatile luminescent nanoprobes based on Ln^(3+)-doped sulphide NCs.展开更多
基金supported by the National Natural Science Foundation of China(Nos.82273867 and 82030107)the Science and Technology Commission of Shanghai Municipality(No.21430760800,China).
文摘The aggregation-caused quenching(ACQ)rationale has been employed to improve the fluorescence imaging accuracy of nanocarriers by precluding free probe-derived interferences.However,its usefulness is undermined by limited penetration and low spatiotemporal resolution of NIR-Ⅰ(700-900 nm)bioimaging owing to absorption and diffraction by biological tissues and tissue-derived autofluorescence.This study aimed to develop ACQ-based NIR-Ⅱ(1000-1700 nm)probes to further improve the imaging resolution and accuracy.The strategy employed is to install highly planar and electron-rich julolidine into the 3,5-position of aza-BODIPY based on the larger substituent effects.The newly developed probes displayed remarkable photophysical properties,with intense absorption centered at approximately 850 nm and bright emission in the 950-1300 nm region.Compared with the NIR-Ⅰ counterpart P2,the NIR-Ⅱ probes demonstrated superior water sensitivity and quenching stability.ACQ1 and ACQ6 exhibited more promising ACQ effects with absolute fluorescence quenching at water fractions above 40% and higher quenching stability with less than 2.0% fluorescence reillumination in plasma after 24 h of incubation.Theoretical calculations verified that molecular planarity is more important than hydrophobicity for ACQ properties.Additionally,in vivo and ex vivo reillumination studies revealed less than 2.5% signal interference from prequenched ACQ1,in contrast to 15% for P2.
基金supported by the Science and Technology Cooperation Fund between Chinese and Australian Governments(2017YFE0132300)the National Natural Science Foundation of China(22135008,12074379,21875250,12004384)+1 种基金the Natural Science Foundation of Fujian Province(2020I0037,2021L3024)the Chinese Academy of Sciences/State Administration of Foreign Experts Affairs(CAS/SAFEA)International Partnership Program for Creative Research Teams,and Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(2021ZR125)。
文摘Lanthanide(Ln^(3+))-doped near infrared(NIR)-II luminescent nanoprobes have shown great promise in many technological fields,but are currently limited by the low absorption efficiency of Ln^(3+)due to the forbidden 4f→4f transition.Herein,we report a novel NIR-II luminescent nanoprobe based on efficient energy transfer from Ce^(3+)to Er^(3+)and Nd^(3+)in sub-10 nm SrS nanocrystals(NCs),which are excitable by using a commercial blue light-emitting diode(LED).Through sensitization by the allowed 4f→5d transition of Ce^(3+),the NCs exhibit strong NIR-II luminescence from Er^(3+)and Nd^(3+)with quantum yields of 2.9%and 2.3%,respectively.Furthermore,by utilizing the intense NIR-II luminescence of Er^(3+)from the thermally coupled Stark sublevels of ^(4)I_(13/2),we demonstrate the application of SrS:Ce^(3+)/Er^(3+)NCs as blue-LED-excitable NIR-II luminescent nanoprobes for ratiometric thermal sensing.These findings reveal the unique advantages of SrS:Ln^(3+)NCs in NIR-II luminescence,which may open up a new avenue for exploring novel and versatile luminescent nanoprobes based on Ln^(3+)-doped sulphide NCs.
基金supported by the National Natural Science Foundation of China(62175262)the Fundamental Research Funds for the Central Universities(2020CX021)the Key R&D plan of Hunan Province(2022SK2101)。